The application of environmentally friendly and energy-efficient membrane processes allows improvement the ecological safety and sustainability of industrial production. However, the effective application of membrane processes requires novel high-performance thin film composite (TFC) membranes based on biopolymers to solve environmental problems. In this work for the first time novel thin film nanocomposite (TFN) membranes based on biopolymer chitosan succinate (ChS) modified with the metal organic framework iron 1,3,5-benzenetricarboxylate (Fe-BTC) were developed for enhanced pervaporation dehydration. The formation of a selective layer of TFN membranes on the porous membrane-support was carried out by two methods—dynamic technique and physical adsorption. The effect of the membrane formation method and Fe-BTC content in ChS layer on the structure and physicochemical properties of TFN membranes was investigated. The developed TFN ChS-based membranes were evaluated in the pervaporation dehydration of isopropanol (12–30 wt.% water). It was found that TFN ChS-Fe-BTC membranes prepared by two methods demonstrated improved permeation flux compared to the reference TFC ChS membrane. The best transport properties in pervaporation dehydration of isopropanol (12–30 wt.% water) were possessed by TFN membranes with 40 wt.% Fe-BTC prepared by dynamic technique (per-meation flux 99–499 g m−2 h−1 and 99.99% water in permeate) and TFN membranes with 5 wt.% Fe-BTC developed by physical adsorption (permeation flux 180–701 g m−2 h−1 and 99.99% water in permeate).

Original languageEnglish
Article number653
JournalMembranes
Volume12
Issue number7
DOIs
StatePublished - Jul 2022

    Scopus subject areas

  • Chemical Engineering (miscellaneous)
  • Process Chemistry and Technology
  • Filtration and Separation

    Research areas

  • chitosan succinate, dynamic technique, Fe-BTC, isopropanol dehydration, metal-organic frameworks, pervaporation, physical adsorption, thin film nanocomposite membrane

ID: 99528666