Links

DOI

Membrane technology is an actively developing area of modern societies; with the help of high-performance membranes, it is possible to separate various mixtures for many industrial tasks. The objective of this study was to develop novel effective membranes based on poly(vinylidene fluoride) (PVDF) by its modification with various nanoparticles (TiO 2, Ag-TiO 2, GO-TiO 2, and MWCNT/TiO 2). Two types of membranes have been developed: dense membranes for pervaporation and porous membranes for ultrafiltration. The optimal content of nanoparticles in the PVDF matrix was selected: 0.3 wt% for porous membranes and 0.5 wt% for dense ones. The structural and physicochemical properties of the developed membranes were studied using FTIR spectroscopy, thermogravimetric analysis, scanning electron and atomic force microscopies, and measuring of contact angles. In addition, the molecular dynamics simulation of PVDF and the TiO 2 system was applied. The transport properties and cleaning ability under ultraviolet irradiation of porous membranes were studied by ultrafiltration of a bovine serum albumin solution. The transport properties of dense membranes were tested in pervaporation separation of a water/isopropanol mixture. It was found that membranes with the optimal transport properties are as follows: the dense membrane modified with 0.5 wt% GO-TiO 2 and the porous membrane modified with 0.3 wt% MWCNT/TiO 2 and Ag-TiO 2.

Original languageEnglish
Article number1222
Number of pages27
JournalPolymers
Volume15
Issue number5
DOIs
StatePublished - 28 Feb 2023

    Research areas

  • graphene oxide, molecular dynamics simulation, multi-walled nanotubes, pervaporation, photocatalytic activity, poly(vinylidene fluoride), titanium dioxide, ultrafiltration

ID: 103484950