Research output: Contribution to journal › Article › peer-review
We study complex potentials and related non-diagonalizable Hamiltonians with special emphasis on formal definitions of associated functions and Jordan cells. The non-linear SUSY for complex potentials is considered and the theorems characterizing its structure are presented. We define the class of complex potentials invariant under SUSY transformations for (non-)diagonalizable Hamiltonians and formulate several results concerning the properties of associated functions. We comment on the applicability of these results for softly non-Hermitian PT-symmetric Hamiltonians. The role of SUSY (Darboux) transformations in increasing/decreasing of Jordan cells in SUSY partner Hamiltonians is thoroughly analyzed and summarized in the Index Theorem. The properties of non-diagonalizable Hamiltonians as well as the Index Theorem are illustrated in the solvable examples of non-Hermitian reflectionless Hamiltonians. The rigorous proofs are relegated to part II of this paper. At last, some peculiarities in resolution of identity for discrete and continuous spectra with a zero-energy bound state at threshold are discussed.
Original language | English |
---|---|
Pages (from-to) | 107-136 |
Number of pages | 30 |
Journal | Nuclear Physics B |
Volume | 773 |
Issue number | 3 |
DOIs | |
State | Published - 2 Jul 2007 |
ID: 36468994