The paper deals with the numerical simulation of a supersonic viscous flow containing CO2 molecules near a space body entering the Mars atmosphere. The gas dynamic equations in a shock layer are coupled to the equations of vibrational and chemical kinetics in the mixture CO 2/CO/O2/C/O using three theoretical models for CO 2 vibrational excitation. Threetemperature and two-temperature non-equilibrium approaches as well as the one-temperature thermal equilibrium model have been applied. A comparison of gas flow parameters and heat transfer calculated on the basis of different approximations is presented, and the effect of CO2 vibrational non-equilibrium is discussed. Transport coefficients in a flow are computed using rigorous kinetic theory algorithms which have been incorporated directly to the numerical schemes. The effect of bulk viscosity in a shock layer is studied.

Original languageEnglish
Pages (from-to)831-836
Number of pages6
JournalAIP Conference Proceedings
Volume1084
DOIs
StatePublished - 13 Apr 2009
Event26th International Symposium on Rarefied Gas Dynamics, RGD26 - Kyoto, Japan
Duration: 20 Jul 200825 Jul 2008

    Research areas

  • Multi-temperature vibrational-chemical kinetics, Non-equilibrium CO flows, Transport properties

    Scopus subject areas

  • Physics and Astronomy(all)

ID: 5021097