Documents

DOI

  • Igor V. Pekov
  • Natalia V. Zubkova
  • Vasiliy O. Yapaskurt
  • Dmitry I. Belakovskiy
  • Sergey N. Britvin
  • Atali A. Agakhanov
  • Anna G. Turchkova
  • Evgeny G. Sidorov
  • Anton V. Kutyrev
  • Vladislav A. Blatov
  • Dmitry Y. Pushcharovsky
The new mineral nishanbaevite, ideally KAl2O(AsO4)(SO4), was found in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with euchlorine, alumoklyuchevskite, langbeinite, urusovite, lammerite, lammerite-β, ericlaxmanite, kozyrevskite, and hematite. Nishanbaevite occurs as long-prismatic or lamellar crystals up to 0.03 mm typically combined in brush-like aggregates and crusts up to 1.5 mm across. It is transparent, colourless, with vitreous lustre. Dcalc = 3.012 g cm− 3. Nishanbaevite is optically biaxial (–), α = 1.552, β ≈ γ = 1.567. The chemical composition (average of seven analyses) is: Na2O 3.79, K2O 8.01, CaO 0.10, CuO 0.21, Al2O3 30.08, Fe2O3 0.50, SiO2 1.62, P2O5 0.66, As2O5 32.23, SO3 22.59, total 99.79 wt%. The empirical formula calculated based on 9 O apfu is: (K0.57Na0.41Ca0.01)Σ0.99(Al1.99Fe3+0.02Cu0.01)Σ2.02(As0.95S0.95Si0.09P0.03)Σ2.02O9. Nishanbaevite is orthorhombic, Pbcm, a = 15.487(3), b = 7.2582(16), c = 6.6014(17) Å, V = 742.1(3) Å3 and Z = 4. The strongest reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 15.49(100)(100), 6.56(30)(110), 4.653(29)(111), 3.881(54)(400), 3.298(52)(002), 3.113(29)(121), and 3.038(51)(202, 411). The crystal structure, solved from single-crystal XRD data (R = 7.58%), is unique. It is based on the complex heteropolyhedral sheets formed by zig-zag chains of Al-centred polyhedra (alternating trigonal bipyramids AlO5 and octahedra AlO6 sharing edges) and isolated tetrahedra AsO4 and SO4. Adjacent chains of Al polyhedra are connected via AsO4 tetrahedra to form a heteropolyhedral double-layer. Its topological peculiarity is considered and compared with those in structurally related compounds. The (K,Na) site is located in the interlayer space between SO4 tetrahedra. The position of nishanbaevite among the arsenate-sulfates and their specific structural features are discussed. The mineral is named in honour of the Russian mineralogist Tursun Prnazorovich Nishanbaev (1955–2017).
Original languageEnglish
JournalMineralogy and Petrology
DOIs
StateE-pub ahead of print - 9 Dec 2022

    Research areas

  • Nishanbaevite, new mineral, Potassium aluminium arsenate sulfate, crystal structure, Fumarole, Tolbachik volcano, Kamchatka

ID: 103321084