In this paper new multi-temperature models for rate coefficients of non-equilibrium chemical reactions in mixtures containing CO2 molecules are derived on the basis of the kinetic theory. The models are obtained by averaging of state-dependent reaction rate coefficients, found previously, over multi-temperature vibrational distributions. Five-temperature, three-temperature and two-temperature non-equilibrium distributions are considered and comparison of reaction rate coefficients derived using these distributions as well as the thermal equilibrium one-temperature model is presented. The proposed rate coefficients are used in the governing equations for vibrational and chemical relaxation in the five-component mixture CO2/CO/O2/C/O. The solution of these equations is obtained in the five-temperature, three-temperature, two-temperature and one-temperature approaches. Finally, the influence of chemical reaction models on macroscopic mixture parameters is discussed in the paper.