Let Bn, m be the set of all Boolean functions from {0, 1}n to {0, 1}m, Bn = Bn, 1 and U2 = B2∖{⊕, ≡}. In this paper, we prove the following two new lower bounds on the circuit size over U2.1.A lower bound (Formula presented.) for a linear function f ∈ Bn − 1,logn. The lower bound follows from the following more general result: for any matrix A ∈ {0, 1}m × n with n pairwise different non-zero columns and b ∈ {0, 1}m,(Formula presented.)2.A lower bound (Formula presented.) for f ∈ Bn, n. Again, this is a consequence of the following result: for any f ∈ Bn satisfying a certain simple property,(Formula presented.) where g(f) ∈ Bn, n is defined as follows: g(f) = (f ⊕ x1, … , f ⊕ xn) (to get a 7n − o(n) lower bound it remains to plug in a known function f ∈ Bn, 1 with (Formula presented.)).

Original languageEnglish
Pages (from-to)630-642
Number of pages13
JournalTheory of Computing Systems
Volume56
Issue number4
DOIs
StatePublished - 1 May 2015

    Scopus subject areas

  • Theoretical Computer Science
  • Computational Theory and Mathematics

    Research areas

  • Boolean functions, Circuit complexity, Gate elimination, Lower bounds

ID: 49824305