Neutron resonance spin echo phenomena, produced by resonance coils with adiabatic passage of the neutron spin, are investigated experimentally and theoretically. The adiabatic passage of the neutron spin through a resonance coil requires a specific configuration of the magnetic field. The solution of the Schrödinger equation, obtained for the required configuration, shows the probability of a spin-flip process; it also shows the phase shift, which the neutron experienced, when it flies through it. The precession phase inside the coil consists of three contributions in the rotating frame approach. The first, biggest contribution is the phase of the rotating frame [Formula Presented] The second is the precession phase of the neutron spin in the rotating frame since it follows adiabatically the effective field as seen in this frame. The third, smallest contribution is Berry’s phase since the magnetic field rotates over an angle approaching [Formula Presented] in this rotating frame. This rotation is followed adiabatically by the neutron spin. Finally, the amplitude of the interference pattern and the phase shift between the neutron-spin states are derived for a system consisting of two such flippers. The theoretical consideration is experimentally confirmed.

Original languageEnglish
Article number013614
Number of pages11
JournalPhysical Review A. Atomic, Molecular, and Optical Physics
Volume64
Issue number1
DOIs
StatePublished - 2001

    Scopus subject areas

  • Atomic and Molecular Physics, and Optics

ID: 86440354