Research output: Contribution to journal › Article › peer-review
This paper is a continuation of RZhMat 1980, 5A439, where there was introduced the subgroup γ(δ) of the Chevalley group G(Φ,R) of type Φ over a commutative ring R that corresponds to a net δ, i.e., to a set b{cyrillic}=(b{cyrillic}∝),∝∈Φ, of ideals b{cyrillic}∝ of R such that b{cyrillic}∝b{cyrillic}β{square image of or equal to}b{cyrillic}∝+β whenever α,Β,α+Β ∃Φ. It is proved that if the ring R is semilocal, then Γ(b{cyrillic}) coincides with the group γ0δ considered earlier in RZhMat 1976, 10A151; 1977, 10A301; 1978, 6A476. For this purpose there is constructed a decomposition of γ(δ) into a product of unipotent subgroups and a torus. Analogous results are obtained for sub-radical nets over an arbitrary commutative ring.
Original language | English |
---|---|
Pages (from-to) | 2874-2885 |
Number of pages | 12 |
Journal | Journal of Soviet Mathematics |
Volume | 27 |
Issue number | 4 |
DOIs | |
State | Published - Nov 1984 |
ID: 76483126