Research output: Contribution to journal › Article › peer-review
NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances. / Vigouroux, Corinne; Augusto Bauer Aquino, Carlos; Bauwens, Maite; Becker, Cornelis; Blumenstock, Thomas; De Mazière, Martine; García, Omaira; Grutter, Michel; Guarin, César; Hannigan, James; Hase, Frank; Jones, Nicholas; Kivi, Rigel; Koshelev, Dmitry; Langerock, Bavo; Lutsch, Erik; Makarova, Maria; Metzger, Jean Marc; Müller, Jean François; Notholt, Justus; Ortega, Ivan; Palm, Mathias; Paton-Walsh, Clare; Poberovskii, Anatoly; Rettinger, Markus; Robinson, John; Smale, Dan; Stavrakou, Trissevgeni; Stremme, Wolfgang; Strong, Kim; Sussmann, Ralf; Té, Yao; Toon, Geoffrey.
In: Atmospheric Measurement Techniques, Vol. 11, No. 9, 06.09.2018, p. 5049-5073.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances
AU - Vigouroux, Corinne
AU - Augusto Bauer Aquino, Carlos
AU - Bauwens, Maite
AU - Becker, Cornelis
AU - Blumenstock, Thomas
AU - De Mazière, Martine
AU - García, Omaira
AU - Grutter, Michel
AU - Guarin, César
AU - Hannigan, James
AU - Hase, Frank
AU - Jones, Nicholas
AU - Kivi, Rigel
AU - Koshelev, Dmitry
AU - Langerock, Bavo
AU - Lutsch, Erik
AU - Makarova, Maria
AU - Metzger, Jean Marc
AU - Müller, Jean François
AU - Notholt, Justus
AU - Ortega, Ivan
AU - Palm, Mathias
AU - Paton-Walsh, Clare
AU - Poberovskii, Anatoly
AU - Rettinger, Markus
AU - Robinson, John
AU - Smale, Dan
AU - Stavrakou, Trissevgeni
AU - Stremme, Wolfgang
AU - Strong, Kim
AU - Sussmann, Ralf
AU - Té, Yao
AU - Toon, Geoffrey
PY - 2018/9/6
Y1 - 2018/9/6
N2 - Among the more than 20 ground-based FTIR (Fourier transform infrared) stations currently operating around the globe, only a few have provided formaldehyde (HCHO) total column time series until now. Although several independent studies have shown that the FTIR measurements can provide formaldehyde total columns with good precision, the spatial coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies used different retrieval settings, and biases as large as 50% can be observed in the HCHO total columns depending on these retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations. For the present work, the HCHO retrieval settings have been optimized based on experience gained from past studies and have been applied consistently at the 21 participating stations. Most of them are either part of the Network for the Detection of Atmospheric Composition Change (NDACC) or under consideration for membership. We provide the harmonized settings and a characterization of the HCHO FTIR products. Depending on the station, the total systematic and random uncertainties of an individual HCHO total column measurement lie between 12% and 27% and between 1 and 11×1014moleccm-2, respectively. The median values among all stations are 13% and 2.9×1014moleccm-2 for the total systematic and random uncertainties. This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison with a global chemistry transport model shows consistency in absolute values as well as in seasonal cycles. The network covers very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013moleccm-2) to highly polluted levels (7×1016moleccm-2). Because the measurements can be made at any time during daylight, the diurnal cycle can be observed and is found to be significant at many stations. These HCHO time series, some of them starting in the 1990s, are crucial for past and present satellite validation and will be extended in the coming years for the next generation of satellite missions.
AB - Among the more than 20 ground-based FTIR (Fourier transform infrared) stations currently operating around the globe, only a few have provided formaldehyde (HCHO) total column time series until now. Although several independent studies have shown that the FTIR measurements can provide formaldehyde total columns with good precision, the spatial coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies used different retrieval settings, and biases as large as 50% can be observed in the HCHO total columns depending on these retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations. For the present work, the HCHO retrieval settings have been optimized based on experience gained from past studies and have been applied consistently at the 21 participating stations. Most of them are either part of the Network for the Detection of Atmospheric Composition Change (NDACC) or under consideration for membership. We provide the harmonized settings and a characterization of the HCHO FTIR products. Depending on the station, the total systematic and random uncertainties of an individual HCHO total column measurement lie between 12% and 27% and between 1 and 11×1014moleccm-2, respectively. The median values among all stations are 13% and 2.9×1014moleccm-2 for the total systematic and random uncertainties. This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison with a global chemistry transport model shows consistency in absolute values as well as in seasonal cycles. The network covers very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013moleccm-2) to highly polluted levels (7×1016moleccm-2). Because the measurements can be made at any time during daylight, the diurnal cycle can be observed and is found to be significant at many stations. These HCHO time series, some of them starting in the 1990s, are crucial for past and present satellite validation and will be extended in the coming years for the next generation of satellite missions.
KW - GROUND-BASED FTIR
KW - MOLECULAR SPECTROSCOPIC DATABASE
KW - VOLATILE ORGANIC-COMPOUNDS
KW - MAX-DOAS OBSERVATIONS
KW - ISOPRENE EMISSIONS
KW - INFRARED MEASUREMENTS
KW - VERTICAL-DISTRIBUTION
KW - BIOGENIC EMISSIONS
KW - HIGH-RESOLUTION
KW - MODEL
UR - http://www.scopus.com/inward/record.url?scp=85053032489&partnerID=8YFLogxK
UR - http://www.mendeley.com/research/ndacc-harmonized-formaldehyde-time-series-21-ftir-stations-covering-wide-range-column-abundances
U2 - 10.5194/amt-11-5049-2018
DO - 10.5194/amt-11-5049-2018
M3 - Article
AN - SCOPUS:85053032489
VL - 11
SP - 5049
EP - 5073
JO - Atmospheric Measurement Techniques
JF - Atmospheric Measurement Techniques
SN - 1867-1381
IS - 9
ER -
ID: 36320475