Standard

Natural Deep Eutectic Solvents for the Extraction of Triterpene Saponins from Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen. / Петроченко, Алёна; Орлова, Анастасия; Фролова, Надежда Владимировна; Соболева, Алена; Серебряков, Евгений Борисович; Флисюк, Елена; Фролов, Андрей; Шиков, Александр.

In: Molecules, Vol. 28, No. 8, 3614, 21.04.2023.

Research output: Contribution to journalArticlepeer-review

Harvard

Петроченко, А, Орлова, А, Фролова, НВ, Соболева, А, Серебряков, ЕБ, Флисюк, Е, Фролов, А & Шиков, А 2023, 'Natural Deep Eutectic Solvents for the Extraction of Triterpene Saponins from Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen', Molecules, vol. 28, no. 8, 3614. https://doi.org/10.3390/molecules28083614

APA

Петроченко, А., Орлова, А., Фролова, Н. В., Соболева, А., Серебряков, Е. Б., Флисюк, Е., Фролов, А., & Шиков, А. (2023). Natural Deep Eutectic Solvents for the Extraction of Triterpene Saponins from Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen. Molecules, 28(8), [3614]. https://doi.org/10.3390/molecules28083614

Vancouver

Петроченко А, Орлова А, Фролова НВ, Соболева А, Серебряков ЕБ, Флисюк Е et al. Natural Deep Eutectic Solvents for the Extraction of Triterpene Saponins from Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen. Molecules. 2023 Apr 21;28(8). 3614. https://doi.org/10.3390/molecules28083614

Author

Петроченко, Алёна ; Орлова, Анастасия ; Фролова, Надежда Владимировна ; Соболева, Алена ; Серебряков, Евгений Борисович ; Флисюк, Елена ; Фролов, Андрей ; Шиков, Александр. / Natural Deep Eutectic Solvents for the Extraction of Triterpene Saponins from Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen. In: Molecules. 2023 ; Vol. 28, No. 8.

BibTeX

@article{faa3d16bf972418795495ec576da48e6,
title = "Natural Deep Eutectic Solvents for the Extraction of Triterpene Saponins from Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen",
abstract = "The roots of the medicinal plant Aralia elata are rich in biologically active natural products, with triterpene saponins constituting one of their major groups. These metabolites can be efficiently extracted by methanol and ethanol. Due to their low toxicity, natural deep eutectic solvents (NADES) were recently proposed as promising alternative extractants for the isolation of natural products from medicinal plants. However, although NADES-based extraction protocols are becoming common in routine phytochemical work, their application in the isolation of triterpene saponins has not yet been addressed. Therefore, here, we address the potential of NADES in the extraction of triterpene saponins from the roots of A. elata. For this purpose, the previously reported recoveries of Araliacea triterpene saponins in extraction experiments with seven different acid-based NADES were addressed by a targeted LC-MS-based quantitative approach for, to the best of our knowledge, the first time. Thereby, 20 triterpene saponins were annotated by their exact mass and characteristic fragmentation patterns in the total root material, root bark and root core of A. elata by RP-UHPLC-ESI-QqTOF-MS, with 9 of them being identified in the roots of this plant for the first time. Triterpene saponins were successfully extracted from all tested NADES, with the highest efficiency (both in terms of the numbers and recoveries of individual analytes) achieved using a 1:1 mixture of choline chloride and malic acid, as well as a 1:3 mixture of choline chloride and lactic acid. Thereby, for 13 metabolites, NADES were more efficient extractants in comparison with water and ethanol. Our results indicate that new, efficient NADES-based extraction protocols, giving access to high recoveries of triterpene saponins, might be efficiently employed in laboratory practice. Thus, our data open the prospect of replacing alcohols with NADES in the extraction of A. elata roots. ",
keywords = "Aralia, Deep Eutectic Solvents, Ethanol, Plant Extracts, Saponins, Solvents, Triterpenes, triterpene saponins, Aralia elata, tandem mass spectrometry (MS/MS), acid-based natural deep eutectic solvents (NADES), RP-UHPLC-MS, targeted quantification",
author = "Алёна Петроченко and Анастасия Орлова and Фролова, {Надежда Владимировна} and Алена Соболева and Серебряков, {Евгений Борисович} and Елена Флисюк and Андрей Фролов and Александр Шиков",
year = "2023",
month = apr,
day = "21",
doi = "10.3390/molecules28083614",
language = "English",
volume = "28",
journal = "Molecules",
issn = "1420-3049",
publisher = "MDPI AG",
number = "8",

}

RIS

TY - JOUR

T1 - Natural Deep Eutectic Solvents for the Extraction of Triterpene Saponins from Aralia elata var. mandshurica (Rupr. & Maxim.) J. Wen

AU - Петроченко, Алёна

AU - Орлова, Анастасия

AU - Фролова, Надежда Владимировна

AU - Соболева, Алена

AU - Серебряков, Евгений Борисович

AU - Флисюк, Елена

AU - Фролов, Андрей

AU - Шиков, Александр

PY - 2023/4/21

Y1 - 2023/4/21

N2 - The roots of the medicinal plant Aralia elata are rich in biologically active natural products, with triterpene saponins constituting one of their major groups. These metabolites can be efficiently extracted by methanol and ethanol. Due to their low toxicity, natural deep eutectic solvents (NADES) were recently proposed as promising alternative extractants for the isolation of natural products from medicinal plants. However, although NADES-based extraction protocols are becoming common in routine phytochemical work, their application in the isolation of triterpene saponins has not yet been addressed. Therefore, here, we address the potential of NADES in the extraction of triterpene saponins from the roots of A. elata. For this purpose, the previously reported recoveries of Araliacea triterpene saponins in extraction experiments with seven different acid-based NADES were addressed by a targeted LC-MS-based quantitative approach for, to the best of our knowledge, the first time. Thereby, 20 triterpene saponins were annotated by their exact mass and characteristic fragmentation patterns in the total root material, root bark and root core of A. elata by RP-UHPLC-ESI-QqTOF-MS, with 9 of them being identified in the roots of this plant for the first time. Triterpene saponins were successfully extracted from all tested NADES, with the highest efficiency (both in terms of the numbers and recoveries of individual analytes) achieved using a 1:1 mixture of choline chloride and malic acid, as well as a 1:3 mixture of choline chloride and lactic acid. Thereby, for 13 metabolites, NADES were more efficient extractants in comparison with water and ethanol. Our results indicate that new, efficient NADES-based extraction protocols, giving access to high recoveries of triterpene saponins, might be efficiently employed in laboratory practice. Thus, our data open the prospect of replacing alcohols with NADES in the extraction of A. elata roots.

AB - The roots of the medicinal plant Aralia elata are rich in biologically active natural products, with triterpene saponins constituting one of their major groups. These metabolites can be efficiently extracted by methanol and ethanol. Due to their low toxicity, natural deep eutectic solvents (NADES) were recently proposed as promising alternative extractants for the isolation of natural products from medicinal plants. However, although NADES-based extraction protocols are becoming common in routine phytochemical work, their application in the isolation of triterpene saponins has not yet been addressed. Therefore, here, we address the potential of NADES in the extraction of triterpene saponins from the roots of A. elata. For this purpose, the previously reported recoveries of Araliacea triterpene saponins in extraction experiments with seven different acid-based NADES were addressed by a targeted LC-MS-based quantitative approach for, to the best of our knowledge, the first time. Thereby, 20 triterpene saponins were annotated by their exact mass and characteristic fragmentation patterns in the total root material, root bark and root core of A. elata by RP-UHPLC-ESI-QqTOF-MS, with 9 of them being identified in the roots of this plant for the first time. Triterpene saponins were successfully extracted from all tested NADES, with the highest efficiency (both in terms of the numbers and recoveries of individual analytes) achieved using a 1:1 mixture of choline chloride and malic acid, as well as a 1:3 mixture of choline chloride and lactic acid. Thereby, for 13 metabolites, NADES were more efficient extractants in comparison with water and ethanol. Our results indicate that new, efficient NADES-based extraction protocols, giving access to high recoveries of triterpene saponins, might be efficiently employed in laboratory practice. Thus, our data open the prospect of replacing alcohols with NADES in the extraction of A. elata roots.

KW - Aralia

KW - Deep Eutectic Solvents

KW - Ethanol

KW - Plant Extracts

KW - Saponins

KW - Solvents

KW - Triterpenes

KW - triterpene saponins

KW - Aralia elata

KW - tandem mass spectrometry (MS/MS)

KW - acid-based natural deep eutectic solvents (NADES)

KW - RP-UHPLC-MS

KW - targeted quantification

UR - https://www.mendeley.com/catalogue/cc413f1c-904d-3497-84f1-fa854d727c1b/

U2 - 10.3390/molecules28083614

DO - 10.3390/molecules28083614

M3 - Article

C2 - 37110849

VL - 28

JO - Molecules

JF - Molecules

SN - 1420-3049

IS - 8

M1 - 3614

ER -

ID: 106988066