Standard

Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001). / Garnica, M. ; Otrokov, M. M. ; Casado Aguilar, P. ; Klimovskikh, I. I. ; Estyunin, D. ; Aliev, Z. S.; Amiraslanov, I. R.; Abdullayev, N. A.; Zverev, V. N.; Babanly, M. B.; Mamedov, N. T.; Shikin, A. M. ; Arnau, A.; Vazquez de Parga, A. L.; Chulkov, E. V. ; Miranda, R.

In: npj Quantum Materials, Vol. 7, No. 1, 7, 14.01.2022.

Research output: Contribution to journalArticlepeer-review

Harvard

Garnica, M, Otrokov, MM, Casado Aguilar, P, Klimovskikh, II, Estyunin, D, Aliev, ZS, Amiraslanov, IR, Abdullayev, NA, Zverev, VN, Babanly, MB, Mamedov, NT, Shikin, AM, Arnau, A, Vazquez de Parga, AL, Chulkov, EV & Miranda, R 2022, 'Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001)', npj Quantum Materials, vol. 7, no. 1, 7. https://doi.org/10.1038/s41535-021-00414-6

APA

Garnica, M., Otrokov, M. M., Casado Aguilar, P., Klimovskikh, I. I., Estyunin, D., Aliev, Z. S., Amiraslanov, I. R., Abdullayev, N. A., Zverev, V. N., Babanly, M. B., Mamedov, N. T., Shikin, A. M., Arnau, A., Vazquez de Parga, A. L., Chulkov, E. V., & Miranda, R. (2022). Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001). npj Quantum Materials, 7(1), [7]. https://doi.org/10.1038/s41535-021-00414-6

Vancouver

Author

Garnica, M. ; Otrokov, M. M. ; Casado Aguilar, P. ; Klimovskikh, I. I. ; Estyunin, D. ; Aliev, Z. S. ; Amiraslanov, I. R. ; Abdullayev, N. A. ; Zverev, V. N. ; Babanly, M. B. ; Mamedov, N. T. ; Shikin, A. M. ; Arnau, A. ; Vazquez de Parga, A. L. ; Chulkov, E. V. ; Miranda, R. / Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001). In: npj Quantum Materials. 2022 ; Vol. 7, No. 1.

BibTeX

@article{f3e1997d4a134d0baa3558652f3dd921,
title = "Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001)",
abstract = "We study the surface crystalline and electronic structures of the antiferromagnetic topological insulator MnBi2Te4 using scanning tunneling microscopy/spectroscopy (STM/S), micro(μ)-laser angle-resolved photoemission spectroscopy (ARPES), and density functional theory calculations. Our STM images reveal native point defects at the surface that we identify as BiTe antisites and MnBi substitutions. Bulk X-ray diffraction further evidences the presence of the Mn-Bi intermixing. Overall, our characterizations suggest that the defects concentration is nonuniform within crystals and differs from sample to sample. Consistently, the ARPES and STS experiments reveal that the Dirac point gap of the topological surface state is different for different samples and sample cleavages, respectively. Our calculations show that the antiparallel alignment of the MnBi moments with respect to those of the Mn layer can indeed cause a strong reduction of the Dirac point gap size. The present study provides important insights into a highly debated issue of the MnBi2Te4 Dirac point gap.",
keywords = "Electronic properties and materials, Magnetic properties and materials, Topological matter",
author = "M. Garnica and Otrokov, {M. M.} and {Casado Aguilar}, P. and Klimovskikh, {I. I.} and D. Estyunin and Aliev, {Z. S.} and Amiraslanov, {I. R.} and Abdullayev, {N. A.} and Zverev, {V. N.} and Babanly, {M. B.} and Mamedov, {N. T.} and Shikin, {A. M.} and A. Arnau and {Vazquez de Parga}, {A. L.} and Chulkov, {E. V.} and R. Miranda",
note = "Publisher Copyright: {\textcopyright} 2022, The Author(s).",
year = "2022",
month = jan,
day = "14",
doi = "https://doi.org/10.1038/s41535-021-00414-6",
language = "English",
volume = "7",
journal = "npj Quantum Materials",
issn = "2397-4648",
publisher = "Nature Publishing Group",
number = "1",

}

RIS

TY - JOUR

T1 - Native point defects and their implications for the Dirac point gap at MnBi2Te4(0001)

AU - Garnica, M.

AU - Otrokov, M. M.

AU - Casado Aguilar, P.

AU - Klimovskikh, I. I.

AU - Estyunin, D.

AU - Aliev, Z. S.

AU - Amiraslanov, I. R.

AU - Abdullayev, N. A.

AU - Zverev, V. N.

AU - Babanly, M. B.

AU - Mamedov, N. T.

AU - Shikin, A. M.

AU - Arnau, A.

AU - Vazquez de Parga, A. L.

AU - Chulkov, E. V.

AU - Miranda, R.

N1 - Publisher Copyright: © 2022, The Author(s).

PY - 2022/1/14

Y1 - 2022/1/14

N2 - We study the surface crystalline and electronic structures of the antiferromagnetic topological insulator MnBi2Te4 using scanning tunneling microscopy/spectroscopy (STM/S), micro(μ)-laser angle-resolved photoemission spectroscopy (ARPES), and density functional theory calculations. Our STM images reveal native point defects at the surface that we identify as BiTe antisites and MnBi substitutions. Bulk X-ray diffraction further evidences the presence of the Mn-Bi intermixing. Overall, our characterizations suggest that the defects concentration is nonuniform within crystals and differs from sample to sample. Consistently, the ARPES and STS experiments reveal that the Dirac point gap of the topological surface state is different for different samples and sample cleavages, respectively. Our calculations show that the antiparallel alignment of the MnBi moments with respect to those of the Mn layer can indeed cause a strong reduction of the Dirac point gap size. The present study provides important insights into a highly debated issue of the MnBi2Te4 Dirac point gap.

AB - We study the surface crystalline and electronic structures of the antiferromagnetic topological insulator MnBi2Te4 using scanning tunneling microscopy/spectroscopy (STM/S), micro(μ)-laser angle-resolved photoemission spectroscopy (ARPES), and density functional theory calculations. Our STM images reveal native point defects at the surface that we identify as BiTe antisites and MnBi substitutions. Bulk X-ray diffraction further evidences the presence of the Mn-Bi intermixing. Overall, our characterizations suggest that the defects concentration is nonuniform within crystals and differs from sample to sample. Consistently, the ARPES and STS experiments reveal that the Dirac point gap of the topological surface state is different for different samples and sample cleavages, respectively. Our calculations show that the antiparallel alignment of the MnBi moments with respect to those of the Mn layer can indeed cause a strong reduction of the Dirac point gap size. The present study provides important insights into a highly debated issue of the MnBi2Te4 Dirac point gap.

KW - Electronic properties and materials

KW - Magnetic properties and materials

KW - Topological matter

UR - http://www.scopus.com/inward/record.url?scp=85123177949&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/ad888f18-0a1c-34d6-9605-64a5789a0913/

U2 - https://doi.org/10.1038/s41535-021-00414-6

DO - https://doi.org/10.1038/s41535-021-00414-6

M3 - Article

VL - 7

JO - npj Quantum Materials

JF - npj Quantum Materials

SN - 2397-4648

IS - 1

M1 - 7

ER -

ID: 88469161