Standard

Multipole electrostatic system mathematical modeling. / Vinogradova, E. M.; Starikova, A. V.; Varayun, M. I.

In: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, Vol. 13, No. 4, 30.12.2017, p. 365-371.

Research output: Contribution to journalArticlepeer-review

Harvard

Vinogradova, EM, Starikova, AV & Varayun, MI 2017, 'Multipole electrostatic system mathematical modeling', Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, vol. 13, no. 4, pp. 365-371. https://doi.org/10.21638/11701/spbu10.2017.403

APA

Vinogradova, E. M., Starikova, A. V., & Varayun, M. I. (2017). Multipole electrostatic system mathematical modeling. Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya, 13(4), 365-371. https://doi.org/10.21638/11701/spbu10.2017.403

Vancouver

Vinogradova EM, Starikova AV, Varayun MI. Multipole electrostatic system mathematical modeling. Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. 2017 Dec 30;13(4):365-371. https://doi.org/10.21638/11701/spbu10.2017.403

Author

Vinogradova, E. M. ; Starikova, A. V. ; Varayun, M. I. / Multipole electrostatic system mathematical modeling. In: Vestnik Sankt-Peterburgskogo Universiteta, Prikladnaya Matematika, Informatika, Protsessy Upravleniya. 2017 ; Vol. 13, No. 4. pp. 365-371.

BibTeX

@article{36332230e6514ca8b2a5e3ef45d88570,
title = "Multipole electrostatic system mathematical modeling",
abstract = "This paper presents an electrostatic multipole system{\textquoteright}s mathematical modeling. The multipole system consists of an even number of equiform electrodes of an infinite length. The shape of each electrode can be arbitrary. The constant potential is equal in absolute value and sign-changing at neighboring electrodes. To calculate the potential distribution, each real electrode is changed by a virtual electrode whose surface coincides with an equipotential surface. The variable separation method is used to solve the boundary-value problem in plane polar coordinates. The electrostatic potential distribution is calculated in an analytic form over the entire region of the system. Refs 11. Figs 5.",
keywords = "Electron-optical system, Electrostatic potential, Laplace equation, Multipole system, Poisson equation, Potential distribution, мультипольная система, электронно-оптическая система, распределение потенциала, электростатический потенциал, уравнение Лапласа, уравнение Пуассона",
author = "Vinogradova, {E. M.} and Starikova, {A. V.} and Varayun, {M. I.}",
year = "2017",
month = dec,
day = "30",
doi = "10.21638/11701/spbu10.2017.403",
language = "English",
volume = "13",
pages = "365--371",
journal = " ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ",
issn = "1811-9905",
publisher = "Издательство Санкт-Петербургского университета",
number = "4",

}

RIS

TY - JOUR

T1 - Multipole electrostatic system mathematical modeling

AU - Vinogradova, E. M.

AU - Starikova, A. V.

AU - Varayun, M. I.

PY - 2017/12/30

Y1 - 2017/12/30

N2 - This paper presents an electrostatic multipole system’s mathematical modeling. The multipole system consists of an even number of equiform electrodes of an infinite length. The shape of each electrode can be arbitrary. The constant potential is equal in absolute value and sign-changing at neighboring electrodes. To calculate the potential distribution, each real electrode is changed by a virtual electrode whose surface coincides with an equipotential surface. The variable separation method is used to solve the boundary-value problem in plane polar coordinates. The electrostatic potential distribution is calculated in an analytic form over the entire region of the system. Refs 11. Figs 5.

AB - This paper presents an electrostatic multipole system’s mathematical modeling. The multipole system consists of an even number of equiform electrodes of an infinite length. The shape of each electrode can be arbitrary. The constant potential is equal in absolute value and sign-changing at neighboring electrodes. To calculate the potential distribution, each real electrode is changed by a virtual electrode whose surface coincides with an equipotential surface. The variable separation method is used to solve the boundary-value problem in plane polar coordinates. The electrostatic potential distribution is calculated in an analytic form over the entire region of the system. Refs 11. Figs 5.

KW - Electron-optical system

KW - Electrostatic potential

KW - Laplace equation

KW - Multipole system

KW - Poisson equation

KW - Potential distribution

KW - мультипольная система

KW - электронно-оптическая система

KW - распределение потенциала

KW - электростатический потенциал

KW - уравнение Лапласа

KW - уравнение Пуассона

UR - http://www.scopus.com/inward/record.url?scp=85040443832&partnerID=8YFLogxK

UR - http://vestnik.spbu.ru/html17/s10/s10v4/03.pdf

U2 - 10.21638/11701/spbu10.2017.403

DO - 10.21638/11701/spbu10.2017.403

M3 - Article

AN - SCOPUS:85040443832

VL - 13

SP - 365

EP - 371

JO - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

JF - ВЕСТНИК САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА. ПРИКЛАДНАЯ МАТЕМАТИКА. ИНФОРМАТИКА. ПРОЦЕССЫ УПРАВЛЕНИЯ

SN - 1811-9905

IS - 4

ER -

ID: 45861630