Research output: Contribution to journal › Article › peer-review
Monodromization and a $$ \mathcal{P} \mathcal{T} $$-Symmetric Nonself-Adjoint Quasi-Periodic Operator. / Федотов, Александр Александрович; Борисов, Денис.
In: Russian Journal of Mathematical Physics, Vol. 30, No. 3, 01.09.2023, p. 294-309.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Monodromization and a $$ \mathcal{P} \mathcal{T} $$-Symmetric Nonself-Adjoint Quasi-Periodic Operator
AU - Федотов, Александр Александрович
AU - Борисов, Денис
PY - 2023/9/1
Y1 - 2023/9/1
N2 - Abstract: We study the operator acting in L_2(\mathbb{R}) by the formula (\mathcal{A} \psi)(x)=\psi(x+\omega)+\psi(x-\omega)+ \lambda e^{-2\pi i x} \psi(x) , where x\in\mathbb R is a variable, and \lambda>0 and \omega\in(0,1) are parameters. It is related to the simplest quasi-periodic operator introduced by P. Sarnak in 1982. We investigate \mathcal{A} using the monodromization method, the Buslaev–Fedotov renormalization approach, which arose when trying to extend the Bloch–Floquet theory to difference equations on \mathbb{R} . Within this approach, the analysis of \mathcal{A} turns out to be very natural and transparent. We describe the geometry of the spectrum and calculate the Lyapunov exponent.
AB - Abstract: We study the operator acting in L_2(\mathbb{R}) by the formula (\mathcal{A} \psi)(x)=\psi(x+\omega)+\psi(x-\omega)+ \lambda e^{-2\pi i x} \psi(x) , where x\in\mathbb R is a variable, and \lambda>0 and \omega\in(0,1) are parameters. It is related to the simplest quasi-periodic operator introduced by P. Sarnak in 1982. We investigate \mathcal{A} using the monodromization method, the Buslaev–Fedotov renormalization approach, which arose when trying to extend the Bloch–Floquet theory to difference equations on \mathbb{R} . Within this approach, the analysis of \mathcal{A} turns out to be very natural and transparent. We describe the geometry of the spectrum and calculate the Lyapunov exponent.
UR - https://www.mendeley.com/catalogue/c2eb524c-c49c-3d90-a59a-5901ca3ac749/
U2 - 10.1134/s1061920823030032
DO - 10.1134/s1061920823030032
M3 - Article
VL - 30
SP - 294
EP - 309
JO - Russian Journal of Mathematical Physics
JF - Russian Journal of Mathematical Physics
SN - 1061-9208
IS - 3
ER -
ID: 106918464