Standard

Molecular assembly indices of mineral heteropolyanions : some abiotic molecules are as complex as large biomolecules. / Hazen, R.M.; Burns, P.C.; Cleaves H.J., II; Downs, R.T.; Krivovichev, S.V.; Wong, M.L.

In: Journal of the Royal Society Interface, Vol. 21, No. 211, 20230632, 02.2024.

Research output: Contribution to journalArticlepeer-review

Harvard

Hazen, RM, Burns, PC, Cleaves H.J., II, Downs, RT, Krivovichev, SV & Wong, ML 2024, 'Molecular assembly indices of mineral heteropolyanions: some abiotic molecules are as complex as large biomolecules', Journal of the Royal Society Interface, vol. 21, no. 211, 20230632. https://doi.org/10.1098/rsif.2023.0632

APA

Hazen, R. M., Burns, P. C., Cleaves H.J., II., Downs, R. T., Krivovichev, S. V., & Wong, M. L. (2024). Molecular assembly indices of mineral heteropolyanions: some abiotic molecules are as complex as large biomolecules. Journal of the Royal Society Interface, 21(211), [20230632]. https://doi.org/10.1098/rsif.2023.0632

Vancouver

Hazen RM, Burns PC, Cleaves H.J. II, Downs RT, Krivovichev SV, Wong ML. Molecular assembly indices of mineral heteropolyanions: some abiotic molecules are as complex as large biomolecules. Journal of the Royal Society Interface. 2024 Feb;21(211). 20230632. https://doi.org/10.1098/rsif.2023.0632

Author

Hazen, R.M. ; Burns, P.C. ; Cleaves H.J., II ; Downs, R.T. ; Krivovichev, S.V. ; Wong, M.L. / Molecular assembly indices of mineral heteropolyanions : some abiotic molecules are as complex as large biomolecules. In: Journal of the Royal Society Interface. 2024 ; Vol. 21, No. 211.

BibTeX

@article{e53f979e85574a2ab288018502394d9f,
title = "Molecular assembly indices of mineral heteropolyanions: some abiotic molecules are as complex as large biomolecules",
abstract = "Molecular assembly indices, which measure the number of unique sequential steps theoretically required to construct a three-dimensional molecule from its constituent atomic bonds, have been proposed as potential biosignatures. A central hypothesis of assembly theory is that any molecule with an assembly index ≥15 found in significant local concentrations represents an unambiguous sign of life. We show that abiotic molecule-like heteropolyanions, which assemble in aqueous solution as precursors to some mineral crystals, range in molecular assembly indices from 2 for H2CO3 or Si(OH)4 groups to as large as 21 for the most complex known molecule-like subunits in the rare minerals ewingite and ilmajokite. Therefore, values of molecular assembly indices ≥15 do not represent unambiguous biosignatures. {\textcopyright} 2024 The Authors.",
keywords = "assembly theory, heteropolyanion, mineral evolution, molecular complexity, Titan, Minerals, Silicon compounds, Assembly theory, Atomic bonds, Biosignatures, Heteropoly anions, Large biomolecules, Mineral crystals, Mineral evolutions, Molecular assembly, Molecular complexity, Molecules, mineral, aqueous solution, article, Molecular Conformation, Water, Minerals/chemistry",
author = "R.M. Hazen and P.C. Burns and {Cleaves H.J.}, II and R.T. Downs and S.V. Krivovichev and M.L. Wong",
note = "Export Date: 4 March 2024 Адрес для корреспонденции: Hazen, R.M.; Earth and Planets Laboratory, United States; эл. почта: rhazen@ciw.edu Химические вещества/CAS: Minerals; Water Сведения о финансировании: National Aeronautics and Space Administration, NASA, HST-HF2-51521.001-A Сведения о финансировании: John Templeton Foundation, JTF, 61783 Сведения о финансировании: Carnegie Institution of Washington, GJ-C03-2023-001 Сведения о финансировании: Space Telescope Science Institute, STScI, NAS5-26555 Сведения о финансировании: Russian Science Foundation, RSF, 19-17-00038 Текст о финансировании 1: Support for this work was provided by (i) the John Templeton Foundation grant no. 61783; (ii) the Carnegie Institution for Science; (iii) the Deep-time Digital Earth program grant no. GJ-C03-2023-001; (iv) a private foundation; (v) NASA through the NASA Hubble Fellowship Program grant no. HST-HF2-51521.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. for NASA, under contract NAS5-26555; (vi) the Russian Science Foundation grant 19-17-00038. Acknowledgements Пристатейные ссылки: Marshall, S.M., Murray, A.R.G., Cronin, L., A probabilistic framework for identifying biosignatures using pathway complexity (2017) Phil. Trans. R. Soc. A, 375, p. 20160342; Marshall, S.M., 2021 Identifying molecules as biosignatures with assembly theory and mass spectrometry Nat. Commun., 12, p. 3033; Marshall, S.M., Moore, D.G., Murray, A.R.G., Walker, S.I., Cronin, L., (2019) Quantifying the pathways to life using assembly spaces, , https://arxiv.org/pdf/1907.04649.pdf; Mathis, C., Patarroyo, K.Y., Cronin, L., 2021 Understanding assembly indices, , http://www.molecular-assembly.com/learn/; Liu, Y., Mathis, C., Bajczyk, M.D., Marshall, S.M., Wilbraham, L., Cronin, L., 2021 Exploring and mapping chemical space with molecular assembly trees Sci. Adv., 7, p. ebj2465; Sharma, A., Cz{\'e}gel, D., Lachmann, M., Kempes, C.P., Walker, S.I., Cronin, L., 2023 Assembly theory explains and quantifies selection and evolution Nature, 622, pp. 321-328; Mathis, C., Patarroyo, K.Y., Cronin, L., 2021 Molecular assembly [Python 3 calculator], , http://www.molecular-assembly.com/query; Walker, S.I., Cronin, L., 2023 Time is an object Aeon, , https://aeon.co/essays/time-is-not-an-illusion-its-an-object-with-physical-size, 19 May 2023; Zenil, H., (2023) The 8 fallacies of assembly theory, , https://hectorzenil.medium.com/the-8-fallacies-of-assembly-theory-ba54428b0b45; Uthamacumaran, A., Abrahao, F.S., Kiani, N.A., Zenil, H., 2022 On the salient limitations of the methods of assembly theory and their classification of molecular biosignatures, , https://arxiv.org/abs/2210.00901; Zenil, H., Kiani, N.A., Shang, M.-M., Tegn{\'e}r, J., Algorithmic complexity and reprogrammability of chemical structure networks (2018) Parallel Processing Lett, 28, p. 1850005; Hern{\'a}ndez-Orozco, S., Kiani, N.A., Zenil, H., Algorithmically probable mutations reproduce aspects of evolution, such as convergence rate, genetic memory and modularity (2018) R. Soc. Open Sci., 5, p. 180399; Benner, S.A., (2023) Assembly theory and agnostic life finding, , https://primordialscoop.org/2023/03/24/assembly-theory-and-agnostic-life-finding/; Bosi, F., Tourmaline crystal chemistry (2018) Amer. Mineral., 103, pp. 298-306; Downs, R.T., 2023 The rruff database, , https://rruff.info/ima; Long, D.L., Burkholder, E., Cronin, L., Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices (2007) Chem. Soc. Rev., 36, pp. 105-121; Pope, M.T., Muller, A., Polyoxometalate chemistry—an old field with new dimensions in several disciplines (1991) Angew. Chem. Int. Ed. Engl., 30, pp. 34-48; Burns, P.C., 2020 Complex minerals preserve natural geochemically important nanoscale metal oxide clusters Acta Cryst. B, 76, pp. 512-513; Olds, T.A., Pl{\'a}{\v s}il, J., Kampf, A.R., Dal Bo, F., Burns, P.C., Paddlewheelite, a new uranyl carbonate from the Jachymov District, Bohemia, Czech Republic (2018) Minerals, 8, p. 511; Olds, T.A., Pl{\'a}{\v s}il, J., Kampf, A.R., Simonetti, A., Sadergaski, L.R., Chen, Y.-S., Burns, P.C., Ewingite: Earth{\textquoteright}s most complex mineral (2017) Geology, 45, pp. 1007-1010; Krivovichev, S.V., Topological complexity of crystal structures: quantitative approach (2012) Acta Cryst. A, 68, pp. 393-398; Johnsen, O., Grice, J.D., The crystal chemistry of the eudialyte group (1999) Canadian Mineral, 37, pp. 865-891; Hazen, R.M., Morrison, S.M., 2022 On the paragenetic modes of minerals: a mineral evolution perspective Amer. Mineral., 107, pp. 1262-1287; Kampf, A.R., Hughes, J.M., Nash, B.P., Marty, J., Vanarsite, packratite, morrisonite, and gatewayite: four new minerals containing the [As3+V4+,5+12 As5+6 O51] heteropolyanion, a novel polyoxometalate cluster (2016) Canadian Mineral, 54, pp. 145-162; Krivovichev, S.V., 2020 Polyoxometalate clusters in minerals: review and complexity analysis Acta Cryst. B, 76, pp. 618-629; Perry, S.N., Rodriguez, V.G., Burns, P.C., 2023 Nanoscale calcium uranyl carbonatye clusters in water Chem. Geol., 641, p. 121766; Tyumentseva, O.S., Kornyakov, I.V., Kasatkin, A.V., Pl{\'a}sil, J., Krzhizhanovskaya, M.G., Krivovichev, S.V., Burns, P.C., Gurzhiy, V.V., 2022 One of nature{\textquoteright}s puzzles is assembled: analog of the Earth{\textquoteright}s most complex mineral, ewingite, synthesized in a laboratory Materials, 15, p. 6643; Zolotarev, A.A., Jr, Krivovichev, S.V., C{\'a}mara, F., Bindi, L., Zhitova, E.S., Hawthorne, F., Sokolova, E., 2020 Extraordinary structural complexity of ilmajokite: a multilevel hierarchical framework structure of natural origin Int. Union Cryst. J., 7, pp. 121-128; Krivovichev, S.V., Structural complexity of minerals: information storage and processing in the mineral world (2013) Mineral. Mag., 77, pp. 275-326; Krivovichev, S.V., Which inorganic structures are the most complex? (2014) Angew. Chem. Int. Ed., 53, pp. 654-661; Krivovichev, S.V., Structural complexity of minerals and mineral parageneses: information and its evolution in the mineral world (2015) Highlights in mineralogical crystallography, pp. 31-73. , eds R Danisi, T Armbruster),. Berlin, Germany: Walter de Gruyter. doi; Krivovichev, S.V., Structural complexity and configurational entropy of crystalline solids (2016) Acta Cryst. B, 72, pp. 274-276; Krivovichev, S.V., Krivovichev, V.G., Hazen, R.M., Structural and chemical complexity of minerals: correlations and time evolution (2018) Eur. J. Mineral., 30, pp. 231-236; Krivovichev, S.V., 2022 Structural and chemical complexity of minerals: an update Mineral. Mag., 86, pp. 183-204; Wordsworth, R., Pierrehumbert, R., Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets (2014) Astrophys. J. Lett., 785, p. L20; Meadows, V.S., Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment (2018) Astrobiology, 18, pp. 630-662; Kleinb{\"o}hl, A., Willacy, K., Friedson, A.J., Chen, P., Swain, M.R., Buildup of abiotic oxygen and ozone in moist atmospheres of temperate terrestrial exoplanets and its impact on the spectral fingerprint in transit observations (2018) Astrophys. J., 862, p. 92; Hystad, G., Eleish, A., Downs, R.T., Morrison, S.M., Hazen, R.M., Bayesian estimation of Earth{\textquoteright}s undiscovered mineralogical diversity using noninformative priors (2019) Math. Geosci., 51, pp. 401-417; Barton, I.F., Trends in the discovery of new minerals over the last century (2019) Amer. Mineral., 104, pp. 641-651; Bermanec, M., Vidovi{\'c}, N., Gavryliv, L., Morrison, S.M., Hazen, R.M., 2022 Evolution of symmetry index in minerals Geosci. Data J., 11, pp. 69-85; Corominas-Murtra, B., Seoane, L.F., Sol{\'e}, R., Zipf{\textquoteright}s Law, unbounded complexity and open-ended evolution (2018) J. R. Soc. Interface, 15, p. 20180395; Bedau, M.A., Snyder, E., Packard, N.H., A classification of long-term evolutionary dynamics (1998) Artificial life VI: Proc. 6th Int. Conf. on Artificial Life, pp. 228-237. , eds C Adami, RK Belew, H Kitano, CE Taylor),. Cambridge, MA: MIT Press; Packard, N., Bedau, M.A., Channon, A., Ikegami, T., Rasmussen, S., Stanley, K.O., Taylor, T., An overview of open-ended evolution: editorial introduction to the Open-Ended Evolution II special issue (2019) Artif. Life, 25, pp. 93-103; Maynard-Casely, H.E., Cable, M.L., Malaska, M.J., Vu, T.H., Choukroun, M., Hodyss, R., Prospects for mineralogy on Titan (2018) Amer. Mineral., 103, pp. 343-349; Cable, M.L., Runcevski, T., Maynard-Casely, H.E., Vu, T.H., Hodyss, R., Titan in a test tube: organic co-crystals and implications for Titan mineralogy Acc. Chem. Res., 54, pp. 3050-3059; Hazen, R.M., Morrison, S.M., Prabhu, A., 2023 The evolution of mineral evolution Celebrating the international year of mineralogy, pp. 15-37. , eds L Bindi, G Cruciani),. New York, NY: Springer; Hazen, R.M., Morrison, S.M., Prabhu, A., Williams, J.R., Wong, M.L., Krivovichev, S.V., Bermanec, M., 2023 On the attributes of mineral paragenetic modes Canadian J. Mineral. Petrol., 61, pp. 653-673; Wong, M.L., Cleland, C.E., Arends, D., Jr, Bartlett, S., Cleaves, H.J., II, Demarest, H., Lunine, J.I., Hazen, R.M., 2023 On the roles of function and selection in evolving systems Proc. Natl Acad. Sci. USA, 120. , e2310223120. doi; Adams, D., (1979) The hitchhiker{\textquoteright}s guide to the galaxy, , London, UK: Pan Books",
year = "2024",
month = feb,
doi = "10.1098/rsif.2023.0632",
language = "Английский",
volume = "21",
journal = "Journal of the Royal Society Interface",
issn = "1742-5689",
publisher = "Royal Society of London",
number = "211",

}

RIS

TY - JOUR

T1 - Molecular assembly indices of mineral heteropolyanions

T2 - some abiotic molecules are as complex as large biomolecules

AU - Hazen, R.M.

AU - Burns, P.C.

AU - Cleaves H.J., II

AU - Downs, R.T.

AU - Krivovichev, S.V.

AU - Wong, M.L.

N1 - Export Date: 4 March 2024 Адрес для корреспонденции: Hazen, R.M.; Earth and Planets Laboratory, United States; эл. почта: rhazen@ciw.edu Химические вещества/CAS: Minerals; Water Сведения о финансировании: National Aeronautics and Space Administration, NASA, HST-HF2-51521.001-A Сведения о финансировании: John Templeton Foundation, JTF, 61783 Сведения о финансировании: Carnegie Institution of Washington, GJ-C03-2023-001 Сведения о финансировании: Space Telescope Science Institute, STScI, NAS5-26555 Сведения о финансировании: Russian Science Foundation, RSF, 19-17-00038 Текст о финансировании 1: Support for this work was provided by (i) the John Templeton Foundation grant no. 61783; (ii) the Carnegie Institution for Science; (iii) the Deep-time Digital Earth program grant no. GJ-C03-2023-001; (iv) a private foundation; (v) NASA through the NASA Hubble Fellowship Program grant no. HST-HF2-51521.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. for NASA, under contract NAS5-26555; (vi) the Russian Science Foundation grant 19-17-00038. Acknowledgements Пристатейные ссылки: Marshall, S.M., Murray, A.R.G., Cronin, L., A probabilistic framework for identifying biosignatures using pathway complexity (2017) Phil. Trans. R. Soc. A, 375, p. 20160342; Marshall, S.M., 2021 Identifying molecules as biosignatures with assembly theory and mass spectrometry Nat. Commun., 12, p. 3033; Marshall, S.M., Moore, D.G., Murray, A.R.G., Walker, S.I., Cronin, L., (2019) Quantifying the pathways to life using assembly spaces, , https://arxiv.org/pdf/1907.04649.pdf; Mathis, C., Patarroyo, K.Y., Cronin, L., 2021 Understanding assembly indices, , http://www.molecular-assembly.com/learn/; Liu, Y., Mathis, C., Bajczyk, M.D., Marshall, S.M., Wilbraham, L., Cronin, L., 2021 Exploring and mapping chemical space with molecular assembly trees Sci. Adv., 7, p. ebj2465; Sharma, A., Czégel, D., Lachmann, M., Kempes, C.P., Walker, S.I., Cronin, L., 2023 Assembly theory explains and quantifies selection and evolution Nature, 622, pp. 321-328; Mathis, C., Patarroyo, K.Y., Cronin, L., 2021 Molecular assembly [Python 3 calculator], , http://www.molecular-assembly.com/query; Walker, S.I., Cronin, L., 2023 Time is an object Aeon, , https://aeon.co/essays/time-is-not-an-illusion-its-an-object-with-physical-size, 19 May 2023; Zenil, H., (2023) The 8 fallacies of assembly theory, , https://hectorzenil.medium.com/the-8-fallacies-of-assembly-theory-ba54428b0b45; Uthamacumaran, A., Abrahao, F.S., Kiani, N.A., Zenil, H., 2022 On the salient limitations of the methods of assembly theory and their classification of molecular biosignatures, , https://arxiv.org/abs/2210.00901; Zenil, H., Kiani, N.A., Shang, M.-M., Tegnér, J., Algorithmic complexity and reprogrammability of chemical structure networks (2018) Parallel Processing Lett, 28, p. 1850005; Hernández-Orozco, S., Kiani, N.A., Zenil, H., Algorithmically probable mutations reproduce aspects of evolution, such as convergence rate, genetic memory and modularity (2018) R. Soc. Open Sci., 5, p. 180399; Benner, S.A., (2023) Assembly theory and agnostic life finding, , https://primordialscoop.org/2023/03/24/assembly-theory-and-agnostic-life-finding/; Bosi, F., Tourmaline crystal chemistry (2018) Amer. Mineral., 103, pp. 298-306; Downs, R.T., 2023 The rruff database, , https://rruff.info/ima; Long, D.L., Burkholder, E., Cronin, L., Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices (2007) Chem. Soc. Rev., 36, pp. 105-121; Pope, M.T., Muller, A., Polyoxometalate chemistry—an old field with new dimensions in several disciplines (1991) Angew. Chem. Int. Ed. Engl., 30, pp. 34-48; Burns, P.C., 2020 Complex minerals preserve natural geochemically important nanoscale metal oxide clusters Acta Cryst. B, 76, pp. 512-513; Olds, T.A., Plášil, J., Kampf, A.R., Dal Bo, F., Burns, P.C., Paddlewheelite, a new uranyl carbonate from the Jachymov District, Bohemia, Czech Republic (2018) Minerals, 8, p. 511; Olds, T.A., Plášil, J., Kampf, A.R., Simonetti, A., Sadergaski, L.R., Chen, Y.-S., Burns, P.C., Ewingite: Earth’s most complex mineral (2017) Geology, 45, pp. 1007-1010; Krivovichev, S.V., Topological complexity of crystal structures: quantitative approach (2012) Acta Cryst. A, 68, pp. 393-398; Johnsen, O., Grice, J.D., The crystal chemistry of the eudialyte group (1999) Canadian Mineral, 37, pp. 865-891; Hazen, R.M., Morrison, S.M., 2022 On the paragenetic modes of minerals: a mineral evolution perspective Amer. Mineral., 107, pp. 1262-1287; Kampf, A.R., Hughes, J.M., Nash, B.P., Marty, J., Vanarsite, packratite, morrisonite, and gatewayite: four new minerals containing the [As3+V4+,5+12 As5+6 O51] heteropolyanion, a novel polyoxometalate cluster (2016) Canadian Mineral, 54, pp. 145-162; Krivovichev, S.V., 2020 Polyoxometalate clusters in minerals: review and complexity analysis Acta Cryst. B, 76, pp. 618-629; Perry, S.N., Rodriguez, V.G., Burns, P.C., 2023 Nanoscale calcium uranyl carbonatye clusters in water Chem. Geol., 641, p. 121766; Tyumentseva, O.S., Kornyakov, I.V., Kasatkin, A.V., Plásil, J., Krzhizhanovskaya, M.G., Krivovichev, S.V., Burns, P.C., Gurzhiy, V.V., 2022 One of nature’s puzzles is assembled: analog of the Earth’s most complex mineral, ewingite, synthesized in a laboratory Materials, 15, p. 6643; Zolotarev, A.A., Jr, Krivovichev, S.V., Cámara, F., Bindi, L., Zhitova, E.S., Hawthorne, F., Sokolova, E., 2020 Extraordinary structural complexity of ilmajokite: a multilevel hierarchical framework structure of natural origin Int. Union Cryst. J., 7, pp. 121-128; Krivovichev, S.V., Structural complexity of minerals: information storage and processing in the mineral world (2013) Mineral. Mag., 77, pp. 275-326; Krivovichev, S.V., Which inorganic structures are the most complex? (2014) Angew. Chem. Int. Ed., 53, pp. 654-661; Krivovichev, S.V., Structural complexity of minerals and mineral parageneses: information and its evolution in the mineral world (2015) Highlights in mineralogical crystallography, pp. 31-73. , eds R Danisi, T Armbruster),. Berlin, Germany: Walter de Gruyter. doi; Krivovichev, S.V., Structural complexity and configurational entropy of crystalline solids (2016) Acta Cryst. B, 72, pp. 274-276; Krivovichev, S.V., Krivovichev, V.G., Hazen, R.M., Structural and chemical complexity of minerals: correlations and time evolution (2018) Eur. J. Mineral., 30, pp. 231-236; Krivovichev, S.V., 2022 Structural and chemical complexity of minerals: an update Mineral. Mag., 86, pp. 183-204; Wordsworth, R., Pierrehumbert, R., Abiotic oxygen-dominated atmospheres on terrestrial habitable zone planets (2014) Astrophys. J. Lett., 785, p. L20; Meadows, V.S., Exoplanet biosignatures: understanding oxygen as a biosignature in the context of its environment (2018) Astrobiology, 18, pp. 630-662; Kleinböhl, A., Willacy, K., Friedson, A.J., Chen, P., Swain, M.R., Buildup of abiotic oxygen and ozone in moist atmospheres of temperate terrestrial exoplanets and its impact on the spectral fingerprint in transit observations (2018) Astrophys. J., 862, p. 92; Hystad, G., Eleish, A., Downs, R.T., Morrison, S.M., Hazen, R.M., Bayesian estimation of Earth’s undiscovered mineralogical diversity using noninformative priors (2019) Math. Geosci., 51, pp. 401-417; Barton, I.F., Trends in the discovery of new minerals over the last century (2019) Amer. Mineral., 104, pp. 641-651; Bermanec, M., Vidović, N., Gavryliv, L., Morrison, S.M., Hazen, R.M., 2022 Evolution of symmetry index in minerals Geosci. Data J., 11, pp. 69-85; Corominas-Murtra, B., Seoane, L.F., Solé, R., Zipf’s Law, unbounded complexity and open-ended evolution (2018) J. R. Soc. Interface, 15, p. 20180395; Bedau, M.A., Snyder, E., Packard, N.H., A classification of long-term evolutionary dynamics (1998) Artificial life VI: Proc. 6th Int. Conf. on Artificial Life, pp. 228-237. , eds C Adami, RK Belew, H Kitano, CE Taylor),. Cambridge, MA: MIT Press; Packard, N., Bedau, M.A., Channon, A., Ikegami, T., Rasmussen, S., Stanley, K.O., Taylor, T., An overview of open-ended evolution: editorial introduction to the Open-Ended Evolution II special issue (2019) Artif. Life, 25, pp. 93-103; Maynard-Casely, H.E., Cable, M.L., Malaska, M.J., Vu, T.H., Choukroun, M., Hodyss, R., Prospects for mineralogy on Titan (2018) Amer. Mineral., 103, pp. 343-349; Cable, M.L., Runcevski, T., Maynard-Casely, H.E., Vu, T.H., Hodyss, R., Titan in a test tube: organic co-crystals and implications for Titan mineralogy Acc. Chem. Res., 54, pp. 3050-3059; Hazen, R.M., Morrison, S.M., Prabhu, A., 2023 The evolution of mineral evolution Celebrating the international year of mineralogy, pp. 15-37. , eds L Bindi, G Cruciani),. New York, NY: Springer; Hazen, R.M., Morrison, S.M., Prabhu, A., Williams, J.R., Wong, M.L., Krivovichev, S.V., Bermanec, M., 2023 On the attributes of mineral paragenetic modes Canadian J. Mineral. Petrol., 61, pp. 653-673; Wong, M.L., Cleland, C.E., Arends, D., Jr, Bartlett, S., Cleaves, H.J., II, Demarest, H., Lunine, J.I., Hazen, R.M., 2023 On the roles of function and selection in evolving systems Proc. Natl Acad. Sci. USA, 120. , e2310223120. doi; Adams, D., (1979) The hitchhiker’s guide to the galaxy, , London, UK: Pan Books

PY - 2024/2

Y1 - 2024/2

N2 - Molecular assembly indices, which measure the number of unique sequential steps theoretically required to construct a three-dimensional molecule from its constituent atomic bonds, have been proposed as potential biosignatures. A central hypothesis of assembly theory is that any molecule with an assembly index ≥15 found in significant local concentrations represents an unambiguous sign of life. We show that abiotic molecule-like heteropolyanions, which assemble in aqueous solution as precursors to some mineral crystals, range in molecular assembly indices from 2 for H2CO3 or Si(OH)4 groups to as large as 21 for the most complex known molecule-like subunits in the rare minerals ewingite and ilmajokite. Therefore, values of molecular assembly indices ≥15 do not represent unambiguous biosignatures. © 2024 The Authors.

AB - Molecular assembly indices, which measure the number of unique sequential steps theoretically required to construct a three-dimensional molecule from its constituent atomic bonds, have been proposed as potential biosignatures. A central hypothesis of assembly theory is that any molecule with an assembly index ≥15 found in significant local concentrations represents an unambiguous sign of life. We show that abiotic molecule-like heteropolyanions, which assemble in aqueous solution as precursors to some mineral crystals, range in molecular assembly indices from 2 for H2CO3 or Si(OH)4 groups to as large as 21 for the most complex known molecule-like subunits in the rare minerals ewingite and ilmajokite. Therefore, values of molecular assembly indices ≥15 do not represent unambiguous biosignatures. © 2024 The Authors.

KW - assembly theory

KW - heteropolyanion

KW - mineral evolution

KW - molecular complexity

KW - Titan

KW - Minerals

KW - Silicon compounds

KW - Assembly theory

KW - Atomic bonds

KW - Biosignatures

KW - Heteropoly anions

KW - Large biomolecules

KW - Mineral crystals

KW - Mineral evolutions

KW - Molecular assembly

KW - Molecular complexity

KW - Molecules

KW - mineral

KW - aqueous solution

KW - article

KW - Molecular Conformation

KW - Water

KW - Minerals/chemistry

UR - https://www.mendeley.com/catalogue/234b5e0b-b5bd-3027-88f6-c0a468ab8458/

U2 - 10.1098/rsif.2023.0632

DO - 10.1098/rsif.2023.0632

M3 - статья

C2 - 38378136

VL - 21

JO - Journal of the Royal Society Interface

JF - Journal of the Royal Society Interface

SN - 1742-5689

IS - 211

M1 - 20230632

ER -

ID: 117319092