We describe and study an explicit structure of a regular cell complex K(L)K(L) on the moduli space M(L) of a planar polygonal linkage L. The combinatorics is very much related (but not equal) to the combinatorics of the permutohedron. In particular, the cells of maximal dimension are labeled by elements of the symmetric group. For example, if the moduli space M is a sphere, the complex KK is dual to the boundary complex of the permutohedron.The dual complex K∗K∗ is patched of Cartesian products of permutohedra. It can be explicitly realized in the Euclidean space via a surgery on the permutohedron.
Translated title of the contributionКонфигурационное пространство изгибаемого многоугольника: комбинаторное описание
Original languageEnglish
Pages (from-to)351-364
Number of pages14
JournalArnold Mathematical Journal
Volume3
Issue number3
DOIs
StatePublished - 2017

    Scopus subject areas

  • Geometry and Topology

ID: 9656098