Standard

Modulation of GPCR Function by Membrane Lipids and Water. / Weerasinghe, Nipuna; Fried, Steven D. E.; Eitel, Anna R.; Mann, Helen; Cosgriff, Emily; Struts, A.V.; Perera, Suchithranga M. D. C.; Brown, M.F.

In: FASEB Journal, Vol. 34, No. S1, 2020.

Research output: Contribution to journalMeeting Abstractpeer-review

Harvard

Weerasinghe, N, Fried, SDE, Eitel, AR, Mann, H, Cosgriff, E, Struts, AV, Perera, SMDC & Brown, MF 2020, 'Modulation of GPCR Function by Membrane Lipids and Water', FASEB Journal, vol. 34, no. S1. <https://doi.org/10.1096/fasebj.2020.34.s1.04282>

APA

Weerasinghe, N., Fried, S. D. E., Eitel, A. R., Mann, H., Cosgriff, E., Struts, A. V., Perera, S. M. D. C., & Brown, M. F. (2020). Modulation of GPCR Function by Membrane Lipids and Water. FASEB Journal, 34(S1). https://doi.org/10.1096/fasebj.2020.34.s1.04282

Vancouver

Weerasinghe N, Fried SDE, Eitel AR, Mann H, Cosgriff E, Struts AV et al. Modulation of GPCR Function by Membrane Lipids and Water. FASEB Journal. 2020;34(S1).

Author

Weerasinghe, Nipuna ; Fried, Steven D. E. ; Eitel, Anna R. ; Mann, Helen ; Cosgriff, Emily ; Struts, A.V. ; Perera, Suchithranga M. D. C. ; Brown, M.F. / Modulation of GPCR Function by Membrane Lipids and Water. In: FASEB Journal. 2020 ; Vol. 34, No. S1.

BibTeX

@article{9b3a784f0ccc467cbc6057257a1797d9,
title = "Modulation of GPCR Function by Membrane Lipids and Water",
abstract = "G‐protein‐coupled receptors (GPCRs) are integral membrane proteins that regulate a wide range of normal and disease‐related physiological processes. Our understanding of the role of soft matter such as membrane lipids and cellular water on activation and regulation of the GPCR function remains incomplete. In the standard biochemical model, GPCRs behave as primarily agonist dependent bimodal switches, with little influence of the surrounding medium. However, using the visual receptor rhodopsin as a model GPCR, we show that water drives rhodopsin to a partially disordered, solvent‐swollen conformational ensemble upon light absorption, rendering the standard model obsolete , . We placed rhodopsin under varying degrees of osmotic stress using polyethylene glycol solutes and investigated the activation equilibrium response using UV‐Visible spectroscopy. Our results show a flood of ~ 80 water molecules into the rhodopsin interior during photoactivation, a result supported by atomistic molecular dynamics simulations . Furthermore, the osmolyte effects on rhodopsin activation are size dependent: large osmolytes back shift the equilibrium to inactive metarhodopsin‐I (MI), while small osmolytes forward‐shift the equilibrium to active metarhodopsin‐II (MII). We attribute these size effects to varying degrees of osmolyte penetration into the rhodopsin core. Large polymers behave similarly to ideal osmolytes and dehydrate rhodopsin, while smaller polymers wriggle into the rhodopsin interior and stabilize the open MII conformation of rhodopsin. Besides osmotic pressure, the application of hydrostatic pressure also back shifts the metarhodopsin equilibrium but for fundamentally different reasons. Integrating the two force‐based methods together with neutron scattering experiments indicates that the active state of rhodopsin is more hydrated yet simultaneously more structurally collapsed . At the same time, the active GPCR undergoes dynamic volume fluctuations and solvent coupling, which give rise to greater thermal volume. Our results necessitate a new understanding of GPCR activation in which the surrounding soft matter is paramount in governing conformational energy landscapes.",
author = "Nipuna Weerasinghe and Fried, {Steven D. E.} and Eitel, {Anna R.} and Helen Mann and Emily Cosgriff and A.V. Struts and Perera, {Suchithranga M. D. C.} and M.F. Brown",
year = "2020",
language = "English",
volume = "34",
journal = "FASEB Journal",
issn = "0892-6638",
publisher = "FASEB",
number = "S1",
note = "Experimental Biology 2020 ; Conference date: 04-04-2020 Through 07-04-2020",

}

RIS

TY - JOUR

T1 - Modulation of GPCR Function by Membrane Lipids and Water

AU - Weerasinghe, Nipuna

AU - Fried, Steven D. E.

AU - Eitel, Anna R.

AU - Mann, Helen

AU - Cosgriff, Emily

AU - Struts, A.V.

AU - Perera, Suchithranga M. D. C.

AU - Brown, M.F.

PY - 2020

Y1 - 2020

N2 - G‐protein‐coupled receptors (GPCRs) are integral membrane proteins that regulate a wide range of normal and disease‐related physiological processes. Our understanding of the role of soft matter such as membrane lipids and cellular water on activation and regulation of the GPCR function remains incomplete. In the standard biochemical model, GPCRs behave as primarily agonist dependent bimodal switches, with little influence of the surrounding medium. However, using the visual receptor rhodopsin as a model GPCR, we show that water drives rhodopsin to a partially disordered, solvent‐swollen conformational ensemble upon light absorption, rendering the standard model obsolete , . We placed rhodopsin under varying degrees of osmotic stress using polyethylene glycol solutes and investigated the activation equilibrium response using UV‐Visible spectroscopy. Our results show a flood of ~ 80 water molecules into the rhodopsin interior during photoactivation, a result supported by atomistic molecular dynamics simulations . Furthermore, the osmolyte effects on rhodopsin activation are size dependent: large osmolytes back shift the equilibrium to inactive metarhodopsin‐I (MI), while small osmolytes forward‐shift the equilibrium to active metarhodopsin‐II (MII). We attribute these size effects to varying degrees of osmolyte penetration into the rhodopsin core. Large polymers behave similarly to ideal osmolytes and dehydrate rhodopsin, while smaller polymers wriggle into the rhodopsin interior and stabilize the open MII conformation of rhodopsin. Besides osmotic pressure, the application of hydrostatic pressure also back shifts the metarhodopsin equilibrium but for fundamentally different reasons. Integrating the two force‐based methods together with neutron scattering experiments indicates that the active state of rhodopsin is more hydrated yet simultaneously more structurally collapsed . At the same time, the active GPCR undergoes dynamic volume fluctuations and solvent coupling, which give rise to greater thermal volume. Our results necessitate a new understanding of GPCR activation in which the surrounding soft matter is paramount in governing conformational energy landscapes.

AB - G‐protein‐coupled receptors (GPCRs) are integral membrane proteins that regulate a wide range of normal and disease‐related physiological processes. Our understanding of the role of soft matter such as membrane lipids and cellular water on activation and regulation of the GPCR function remains incomplete. In the standard biochemical model, GPCRs behave as primarily agonist dependent bimodal switches, with little influence of the surrounding medium. However, using the visual receptor rhodopsin as a model GPCR, we show that water drives rhodopsin to a partially disordered, solvent‐swollen conformational ensemble upon light absorption, rendering the standard model obsolete , . We placed rhodopsin under varying degrees of osmotic stress using polyethylene glycol solutes and investigated the activation equilibrium response using UV‐Visible spectroscopy. Our results show a flood of ~ 80 water molecules into the rhodopsin interior during photoactivation, a result supported by atomistic molecular dynamics simulations . Furthermore, the osmolyte effects on rhodopsin activation are size dependent: large osmolytes back shift the equilibrium to inactive metarhodopsin‐I (MI), while small osmolytes forward‐shift the equilibrium to active metarhodopsin‐II (MII). We attribute these size effects to varying degrees of osmolyte penetration into the rhodopsin core. Large polymers behave similarly to ideal osmolytes and dehydrate rhodopsin, while smaller polymers wriggle into the rhodopsin interior and stabilize the open MII conformation of rhodopsin. Besides osmotic pressure, the application of hydrostatic pressure also back shifts the metarhodopsin equilibrium but for fundamentally different reasons. Integrating the two force‐based methods together with neutron scattering experiments indicates that the active state of rhodopsin is more hydrated yet simultaneously more structurally collapsed . At the same time, the active GPCR undergoes dynamic volume fluctuations and solvent coupling, which give rise to greater thermal volume. Our results necessitate a new understanding of GPCR activation in which the surrounding soft matter is paramount in governing conformational energy landscapes.

M3 - Meeting Abstract

VL - 34

JO - FASEB Journal

JF - FASEB Journal

SN - 0892-6638

IS - S1

T2 - Experimental Biology 2020

Y2 - 4 April 2020 through 7 April 2020

ER -

ID: 64659871