• M. V. Kovalchuk
  • A. S. Boikova
  • Yu A. Dyakova
  • M. A. Marchenkova
  • A. M. Opolchentsev
  • Yu V. Pisarevsky
  • P. A. Prosekov
  • A. Yu Seregin

A modification of the Langmuir–Schaefer method for the fabrication of high-quality protein films on a solid substrate was proposed and applied to lysozyme. The procedure relies on the use of a pre-prepared protein solution, the parameters of which correspond to crystallization conditions. A lysozyme Langmuir monolayer was shown to be formed with the involvement of complexes, namely, dimers and octamers of protein molecules that are present in such protein solutions. These complexes apparently retain the structure after spreading a protein solution onto an aqueous subphase in a Langmuir trough. The thickness of the film after the transfer of the monolayer, which was formed by the proposed procedure, onto a solid substrate corresponds to the diameter of the octamer and this film is dense, continuous, and uniform, as was demonstrated by several methods: X-ray reflectivity, total external reflection X-ray standing wave, and atomic force microscopy. A layer of chloride ions that formed under the Langmuir monolayer was found at the air–protein film interface. This fact confirms an important role of the precipitating agent (chloride ions) in all steps of the formation of lysozyme films.

Original languageEnglish
Pages (from-to)632-638
Number of pages7
JournalCrystallography Reports
Volume62
Issue number4
DOIs
StatePublished - 1 Jul 2017

    Scopus subject areas

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

ID: 88201493