Transport characteristics of sodium alginate (SA) membranes cross-linked with CaCl 2 and modified with fullerenol and fullerene derivative with L-arginine for pervaporation dehydration were improved applying various approaches, including the selection of a porous substrate for the creation of a thin selective SA-based layer, and the deposition of nano-sized polyelectrolyte (PEL) layers through the use of a layer-by-layer (Lbl) method. The impacts of commercial porous sub-strates made of polyacrylonitrile (PAN), regenerated cellulose, and aromatic polysulfone amide were investigated by scanning electron microscopy (SEM), atomic force microscopy (AFM), standard porosimetry method, and water filtration. The effects of PEL combinations (such as poly(sodium 4-styrene sulfonate) (PSS)/SA, PSS/chitosan, PSS/polyacrylic acid, PSS/poly(allylamine hydrochlo-ride)) and the number of PEL bilayers deposited with the Lbl technique on the properties of the SA and SA/fullerene derivative membranes were studied by SEM, AFM, and contact angle measure-ments. The best characteristics were exhibited by a cross-linked PAN-supported SA/fullerenol (5%) membrane with five PSS/SA bilayers: permeation flux of 0.68–1.38 kg/(m 2h), 0.18–1.55 kg/(m 2h), and 0.50–1.15 kg/(m 2h), and over 99.7, 99.0, and 89.0 wt.% water in the permeate for the pervapora-tion dehydration of isopropanol (12–70 wt.% water), ethanol (4–70 wt.% water), and tetrahydrofuran (5.7–70 wt.% water), respectively. It was demonstrated that the mutual application of bulk and surface modifications essentially improved the membrane’s characteristics in pervaporation dehydration.

Original languageEnglish
Article number255
Number of pages29
JournalMembranes
Volume11
Issue number4
DOIs
StatePublished - 1 Apr 2021

    Research areas

  • Fullerene derivatives, Layer-by-layer assembly, Pervaporation dehydration, Polyelec-trolytes, Sodium alginate, Substrates, sodium alginate, substrates, layer-by-layer assembly, fullerene derivatives, pervaporation dehydration, polyelectrolytes

    Scopus subject areas

  • Chemistry(all)
  • Chemical Engineering (miscellaneous)
  • Process Chemistry and Technology
  • Filtration and Separation

ID: 85656522