Standard

Modeling charge collection in silicon pixel detectors for proton therapy applications. / Schilling, Alexander; Aehle, Max; Alme, Johan; Barnaföldi, Gergely Gábor; Bíró, Gábor; Bodova, Tea; Borshchov, Vyacheslav; Brink, Anthony van den; Eikeland, Viljar; Feofilov, Grigory; Garth, Christoph; Gauger, Nicolas R; Grøttvik, Ola; Helstrup, Håvard; Igolkin, Sergey; Johansen, Jacob G; Keidel, Ralf; Kobdaj, Chinorat; Kortus, Tobias; Leonhardt, Viktor; Mehendale, Shruti; Mulawade, Raju Ningappa; Odland, Odd Harald; O’Neill, George; Papp, Gábor; Peitzmann, Thomas; Pettersen, Helge Egil Seime; Piersimoni, Pierluigi; Protsenko, Maksym; Rauch, Max; Rehman, Attiq Ur; Richter, Matthias; Röhrich, Dieter; Santana, Joshua; Seco, Joao; Songmoolnak, Arnon; Sudár, Ákos; Tambave, Ganesh; Tymchuk, Ihor; Ullaland, Kjetil; Varga-Kofarago, Monika; Wagner, Boris; Xiao, RenZheng; Yang, Shiming.

In: Biomedical Physics & Engineering Express, Vol. 11, No. 3, 035005, 12.03.2025.

Research output: Contribution to journalArticlepeer-review

Harvard

Schilling, A, Aehle, M, Alme, J, Barnaföldi, GG, Bíró, G, Bodova, T, Borshchov, V, Brink, AVD, Eikeland, V, Feofilov, G, Garth, C, Gauger, NR, Grøttvik, O, Helstrup, H, Igolkin, S, Johansen, JG, Keidel, R, Kobdaj, C, Kortus, T, Leonhardt, V, Mehendale, S, Mulawade, RN, Odland, OH, O’Neill, G, Papp, G, Peitzmann, T, Pettersen, HES, Piersimoni, P, Protsenko, M, Rauch, M, Rehman, AU, Richter, M, Röhrich, D, Santana, J, Seco, J, Songmoolnak, A, Sudár, Á, Tambave, G, Tymchuk, I, Ullaland, K, Varga-Kofarago, M, Wagner, B, Xiao, R & Yang, S 2025, 'Modeling charge collection in silicon pixel detectors for proton therapy applications', Biomedical Physics & Engineering Express, vol. 11, no. 3, 035005. https://doi.org/10.1088/2057-1976/adbf9c

APA

Schilling, A., Aehle, M., Alme, J., Barnaföldi, G. G., Bíró, G., Bodova, T., Borshchov, V., Brink, A. V. D., Eikeland, V., Feofilov, G., Garth, C., Gauger, N. R., Grøttvik, O., Helstrup, H., Igolkin, S., Johansen, J. G., Keidel, R., Kobdaj, C., Kortus, T., ... Yang, S. (2025). Modeling charge collection in silicon pixel detectors for proton therapy applications. Biomedical Physics & Engineering Express, 11(3), [035005]. https://doi.org/10.1088/2057-1976/adbf9c

Vancouver

Schilling A, Aehle M, Alme J, Barnaföldi GG, Bíró G, Bodova T et al. Modeling charge collection in silicon pixel detectors for proton therapy applications. Biomedical Physics & Engineering Express. 2025 Mar 12;11(3). 035005. https://doi.org/10.1088/2057-1976/adbf9c

Author

Schilling, Alexander ; Aehle, Max ; Alme, Johan ; Barnaföldi, Gergely Gábor ; Bíró, Gábor ; Bodova, Tea ; Borshchov, Vyacheslav ; Brink, Anthony van den ; Eikeland, Viljar ; Feofilov, Grigory ; Garth, Christoph ; Gauger, Nicolas R ; Grøttvik, Ola ; Helstrup, Håvard ; Igolkin, Sergey ; Johansen, Jacob G ; Keidel, Ralf ; Kobdaj, Chinorat ; Kortus, Tobias ; Leonhardt, Viktor ; Mehendale, Shruti ; Mulawade, Raju Ningappa ; Odland, Odd Harald ; O’Neill, George ; Papp, Gábor ; Peitzmann, Thomas ; Pettersen, Helge Egil Seime ; Piersimoni, Pierluigi ; Protsenko, Maksym ; Rauch, Max ; Rehman, Attiq Ur ; Richter, Matthias ; Röhrich, Dieter ; Santana, Joshua ; Seco, Joao ; Songmoolnak, Arnon ; Sudár, Ákos ; Tambave, Ganesh ; Tymchuk, Ihor ; Ullaland, Kjetil ; Varga-Kofarago, Monika ; Wagner, Boris ; Xiao, RenZheng ; Yang, Shiming. / Modeling charge collection in silicon pixel detectors for proton therapy applications. In: Biomedical Physics & Engineering Express. 2025 ; Vol. 11, No. 3.

BibTeX

@article{0a337a39519e4516ac460a27ad2b5dc9,
title = "Modeling charge collection in silicon pixel detectors for proton therapy applications",
abstract = "Objective. Monolithic active pixel sensors are used for charged particle tracking in many applications, from medical physics to astrophysics. The Bergen pCT collaboration designed a sampling calorimeter for proton computed tomography, based entirely on the ALICE PIxel DEtector (ALPIDE). The same telescope can be used for in-situ range verification in particle therapy. An accurate charge diffusion model is required to convert the deposited energy from Monte Carlo simulations to a cluster of pixels, and to estimate the deposited energy, given an experimentally observed cluster. Approach. We optimize the parameters of different charge diffusion models to experimental data for both proton computed tomography and proton range verification, collected at the Danish Centre for Particle Therapy. We then evaluate the performance of downstream tasks to investigate the impact of charge diffusion modeling. Main results. We find that it is beneficial to optimize application-specific models, with a power law working best for proton computed tomography, and a model based on a 2D Cauchy-Lorentz distribution giving better agreement for range verification. We further highlight the importance of evaluating the downstream tasks with multiple approaches to obtain a range of expected performance metrics for the application. Significance. This work demonstrates the influence of the charge diffusion model on downstream tasks, and recommends a new model for proton range verification with an ALPIDE-based pixel telescope.",
keywords = "charge diffusion, monolithic active pixel sensor, proton computed tomography, proton therapy, range verification",
author = "Alexander Schilling and Max Aehle and Johan Alme and Barnaf{\"o}ldi, {Gergely G{\'a}bor} and G{\'a}bor B{\'i}r{\'o} and Tea Bodova and Vyacheslav Borshchov and Brink, {Anthony van den} and Viljar Eikeland and Grigory Feofilov and Christoph Garth and Gauger, {Nicolas R} and Ola Gr{\o}ttvik and H{\aa}vard Helstrup and Sergey Igolkin and Johansen, {Jacob G} and Ralf Keidel and Chinorat Kobdaj and Tobias Kortus and Viktor Leonhardt and Shruti Mehendale and Mulawade, {Raju Ningappa} and Odland, {Odd Harald} and George O{\textquoteright}Neill and G{\'a}bor Papp and Thomas Peitzmann and Pettersen, {Helge Egil Seime} and Pierluigi Piersimoni and Maksym Protsenko and Max Rauch and Rehman, {Attiq Ur} and Matthias Richter and Dieter R{\"o}hrich and Joshua Santana and Joao Seco and Arnon Songmoolnak and {\'A}kos Sud{\'a}r and Ganesh Tambave and Ihor Tymchuk and Kjetil Ullaland and Monika Varga-Kofarago and Boris Wagner and RenZheng Xiao and Shiming Yang",
year = "2025",
month = mar,
day = "12",
doi = "10.1088/2057-1976/adbf9c",
language = "English",
volume = "11",
journal = "Biomedical Physics and Engineering Express",
issn = "2057-1976",
publisher = "IOP Publishing Ltd.",
number = "3",

}

RIS

TY - JOUR

T1 - Modeling charge collection in silicon pixel detectors for proton therapy applications

AU - Schilling, Alexander

AU - Aehle, Max

AU - Alme, Johan

AU - Barnaföldi, Gergely Gábor

AU - Bíró, Gábor

AU - Bodova, Tea

AU - Borshchov, Vyacheslav

AU - Brink, Anthony van den

AU - Eikeland, Viljar

AU - Feofilov, Grigory

AU - Garth, Christoph

AU - Gauger, Nicolas R

AU - Grøttvik, Ola

AU - Helstrup, Håvard

AU - Igolkin, Sergey

AU - Johansen, Jacob G

AU - Keidel, Ralf

AU - Kobdaj, Chinorat

AU - Kortus, Tobias

AU - Leonhardt, Viktor

AU - Mehendale, Shruti

AU - Mulawade, Raju Ningappa

AU - Odland, Odd Harald

AU - O’Neill, George

AU - Papp, Gábor

AU - Peitzmann, Thomas

AU - Pettersen, Helge Egil Seime

AU - Piersimoni, Pierluigi

AU - Protsenko, Maksym

AU - Rauch, Max

AU - Rehman, Attiq Ur

AU - Richter, Matthias

AU - Röhrich, Dieter

AU - Santana, Joshua

AU - Seco, Joao

AU - Songmoolnak, Arnon

AU - Sudár, Ákos

AU - Tambave, Ganesh

AU - Tymchuk, Ihor

AU - Ullaland, Kjetil

AU - Varga-Kofarago, Monika

AU - Wagner, Boris

AU - Xiao, RenZheng

AU - Yang, Shiming

PY - 2025/3/12

Y1 - 2025/3/12

N2 - Objective. Monolithic active pixel sensors are used for charged particle tracking in many applications, from medical physics to astrophysics. The Bergen pCT collaboration designed a sampling calorimeter for proton computed tomography, based entirely on the ALICE PIxel DEtector (ALPIDE). The same telescope can be used for in-situ range verification in particle therapy. An accurate charge diffusion model is required to convert the deposited energy from Monte Carlo simulations to a cluster of pixels, and to estimate the deposited energy, given an experimentally observed cluster. Approach. We optimize the parameters of different charge diffusion models to experimental data for both proton computed tomography and proton range verification, collected at the Danish Centre for Particle Therapy. We then evaluate the performance of downstream tasks to investigate the impact of charge diffusion modeling. Main results. We find that it is beneficial to optimize application-specific models, with a power law working best for proton computed tomography, and a model based on a 2D Cauchy-Lorentz distribution giving better agreement for range verification. We further highlight the importance of evaluating the downstream tasks with multiple approaches to obtain a range of expected performance metrics for the application. Significance. This work demonstrates the influence of the charge diffusion model on downstream tasks, and recommends a new model for proton range verification with an ALPIDE-based pixel telescope.

AB - Objective. Monolithic active pixel sensors are used for charged particle tracking in many applications, from medical physics to astrophysics. The Bergen pCT collaboration designed a sampling calorimeter for proton computed tomography, based entirely on the ALICE PIxel DEtector (ALPIDE). The same telescope can be used for in-situ range verification in particle therapy. An accurate charge diffusion model is required to convert the deposited energy from Monte Carlo simulations to a cluster of pixels, and to estimate the deposited energy, given an experimentally observed cluster. Approach. We optimize the parameters of different charge diffusion models to experimental data for both proton computed tomography and proton range verification, collected at the Danish Centre for Particle Therapy. We then evaluate the performance of downstream tasks to investigate the impact of charge diffusion modeling. Main results. We find that it is beneficial to optimize application-specific models, with a power law working best for proton computed tomography, and a model based on a 2D Cauchy-Lorentz distribution giving better agreement for range verification. We further highlight the importance of evaluating the downstream tasks with multiple approaches to obtain a range of expected performance metrics for the application. Significance. This work demonstrates the influence of the charge diffusion model on downstream tasks, and recommends a new model for proton range verification with an ALPIDE-based pixel telescope.

KW - charge diffusion

KW - monolithic active pixel sensor

KW - proton computed tomography

KW - proton therapy

KW - range verification

UR - https://www.elibrary.ru/item.asp?id=82042812

UR - https://www.mendeley.com/catalogue/439eae80-a730-312b-9885-07cc106983f0/

U2 - 10.1088/2057-1976/adbf9c

DO - 10.1088/2057-1976/adbf9c

M3 - Article

VL - 11

JO - Biomedical Physics and Engineering Express

JF - Biomedical Physics and Engineering Express

SN - 2057-1976

IS - 3

M1 - 035005

ER -

ID: 138032277