The development of high-performance biodegradable alloys with controllable corrosion rates to be used for manufacturing advanced implants is a hot topic of modern materials science and biomedicine. This work features the changes in microstructure, corrosion behavior and mechanical properties of the Mg-2 wt.%Sr alloy progressively induced by equal-channel angular pressing, high-pressure torsion and annealing. We show that such processing leads to significant microstructure refinement including diminishing grain size, defect accumulation and fragmentation of the initial eutectics. We demonstrate that the application of severe plastic deformation and heat treatment is capable of considerably enhancing the mechanical and corrosion performance of a biodegradable alloy of the Mg-Sr system. The best trade-off between strength, plasticity and the corrosion resistance has been achieved by annealing of the Mg-Sr alloy subjected to combined severe plastic deformation processing.
Original languageEnglish
Article number2279
JournalMaterials
Volume16
Issue number6
DOIs
StatePublished - 12 Mar 2023

    Research areas

  • biodegradable magnesium alloy, ultrafine-grained materials, severe plastic deformation, microstructure, mechanical properties, corrosion

ID: 103626406