Research output: Contribution to journal › Article › peer-review
Microplotter printing of planar solid electrolytes in the CeO2–Y2O3 system. / Simonenko, Tatiana L.; Simonenko, Nikolay P.; Gorobtsov, Philipp Yu; Vlasov, Ivan S.; Solovey, Valentin R.; Shelaev, Artem V.; Simonenko, Elizaveta P.; Glumov, Oleg V.; Melnikova, Natalia A.; Kozodaev, Maxim G.; Markeev, Andrey M.; Lizunova, Anna A.; Volkov, Ivan A.; Sevastyanov, Vladimir G.; Kuznetsov, Nikolay T.
In: Journal of Colloid and Interface Science, Vol. 588, 15.04.2021, p. 209-220.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Microplotter printing of planar solid electrolytes in the CeO2–Y2O3 system
AU - Simonenko, Tatiana L.
AU - Simonenko, Nikolay P.
AU - Gorobtsov, Philipp Yu
AU - Vlasov, Ivan S.
AU - Solovey, Valentin R.
AU - Shelaev, Artem V.
AU - Simonenko, Elizaveta P.
AU - Glumov, Oleg V.
AU - Melnikova, Natalia A.
AU - Kozodaev, Maxim G.
AU - Markeev, Andrey M.
AU - Lizunova, Anna A.
AU - Volkov, Ivan A.
AU - Sevastyanov, Vladimir G.
AU - Kuznetsov, Nikolay T.
N1 - Funding Information: This work was supported by the Russian Science Foundation (project no. 19-73-00354). Authors also acknowledge the MIPT Shared Facilities Center, supported by the Ministry of Education and Science of the Russian Federation , for access to the equipment related to XPS analysis of the samples in the CeO 2 –Y 2 O 3 system.
PY - 2021/4/15
Y1 - 2021/4/15
N2 - The formation process for planar solid electrolytes in the CeO2-Y2O3 system has been studied using efficient, high-performance, high-resolution microplotter printing technology, using functional ink based on nanopowders (the average size of crystallites was 12–15 nm) of a similar composition obtained by programmed coprecipitation of metal hydroxides. The dependence of the microstructure of the oxide nanoparticles obtained and their crystal structure on yttrium concentration has been studied using a wide range of methods. According to X-ray diffraction (XRD), the nanopowders and coatings produced are single-phase, with a cubic crystal structure of the fluorite type, and the electronic state and content of cerium and yttrium in the printed coatings have been determined using X-ray photoelectron spectroscopy (XPS). The results of scanning electron (SEM) and atomic force microscopy (AFM) have shown that the coatings produced are homogeneous, they do not contain defects in the form of fractures and the height difference over an area of 1 µm2 is 30–45 nm. The local electrophysical characteristics of the oxide coatings produced (the work function of the coating surface, capacitance values, maps of the surface potential and capacitive contrast distribution over the surface) have been studied using Kelvin-probe force microscopy (KPFM) and scanning capacitive microscopy (SCM). Using impedance spectroscopy, the dependence of the electrophysical characteristics of printed planar solid electrolytes in the CeO2-Y2O3 system on yttrium content has been determined and the prospects of the technology developed for the manufacture of modern, intermediate-temperature, solid oxide fuel cells have been demonstrated.
AB - The formation process for planar solid electrolytes in the CeO2-Y2O3 system has been studied using efficient, high-performance, high-resolution microplotter printing technology, using functional ink based on nanopowders (the average size of crystallites was 12–15 nm) of a similar composition obtained by programmed coprecipitation of metal hydroxides. The dependence of the microstructure of the oxide nanoparticles obtained and their crystal structure on yttrium concentration has been studied using a wide range of methods. According to X-ray diffraction (XRD), the nanopowders and coatings produced are single-phase, with a cubic crystal structure of the fluorite type, and the electronic state and content of cerium and yttrium in the printed coatings have been determined using X-ray photoelectron spectroscopy (XPS). The results of scanning electron (SEM) and atomic force microscopy (AFM) have shown that the coatings produced are homogeneous, they do not contain defects in the form of fractures and the height difference over an area of 1 µm2 is 30–45 nm. The local electrophysical characteristics of the oxide coatings produced (the work function of the coating surface, capacitance values, maps of the surface potential and capacitive contrast distribution over the surface) have been studied using Kelvin-probe force microscopy (KPFM) and scanning capacitive microscopy (SCM). Using impedance spectroscopy, the dependence of the electrophysical characteristics of printed planar solid electrolytes in the CeO2-Y2O3 system on yttrium content has been determined and the prospects of the technology developed for the manufacture of modern, intermediate-temperature, solid oxide fuel cells have been demonstrated.
KW - CeO coating
KW - Microplotter printing
KW - Planar SOFC
KW - Programmable coprecipitation
KW - YDC electrolyte
KW - CeO2 coating
UR - http://www.scopus.com/inward/record.url?scp=85098724218&partnerID=8YFLogxK
U2 - 10.1016/j.jcis.2020.12.052
DO - 10.1016/j.jcis.2020.12.052
M3 - Article
AN - SCOPUS:85098724218
VL - 588
SP - 209
EP - 220
JO - Journal of Colloid and Interface Science
JF - Journal of Colloid and Interface Science
SN - 0021-9797
ER -
ID: 72643154