DOI

In this paper, the experimental current density versus electric field characteristics of Si 3 N 4 before and after the electrical field-induced stress were measured. It is shown that, the Frenkel model of Coulomb trap ionization, Hill-Adachi model of overlapping Coulomb traps, Makram-Ebeid and Lannoo multiphonon isolated trap ionization model do not describe the charge transport of Si 3 N 4 before and after the electrical field-induced stress. The Nasyrov-Gritsenko model of phonon assisted tunneling between traps quantitatively describes the hole transport mechanism in Si 3 N 4 before and after the induced stress at traps energies W t =1.6 eV and W opt =3.2 eV. The current leakage at different induced stresses in Si 3 N 4 is explained by the increase of trap concentration via the creation of Si-Si bonds, which are traps in Si 3 N 4 .

Original languageEnglish
Article number076401
Number of pages6
JournalMaterials Research Express
Volume6
Issue number7
DOIs
StatePublished - Jul 2019

    Research areas

  • charge transport, SILC, traps, SILICON-NITRIDE, MEMORY, RETENTION, CHARGE-TRANSPORT, CONDUCTION, DEVICES, MODEL

    Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Metals and Alloys
  • Surfaces, Coatings and Films
  • Polymers and Plastics
  • Biomaterials

ID: 42403483