Standard

Mappings of the sphere to a simply connected space. / Podkorytov, S. S.

In: Journal of Mathematical Sciences , Vol. 140, No. 4, 01.01.2007, p. 589-610.

Research output: Contribution to journalArticlepeer-review

Harvard

Podkorytov, SS 2007, 'Mappings of the sphere to a simply connected space', Journal of Mathematical Sciences , vol. 140, no. 4, pp. 589-610. https://doi.org/10.1007/s10958-007-0441-6

APA

Vancouver

Author

Podkorytov, S. S. / Mappings of the sphere to a simply connected space. In: Journal of Mathematical Sciences . 2007 ; Vol. 140, No. 4. pp. 589-610.

BibTeX

@article{3a84d21c0bff4f78afc2223b011d42cf,
title = "Mappings of the sphere to a simply connected space",
abstract = "Fix an m ε N, m ≥ 2. Let Y be a simply connected pointed CW-complex, and let B be a finite set of continuous mappings a: Sm → Y respecting the distinguished points. Let Γ(a) ⊂ Sm × Y be the graph of a, and we denote by [a] πm(Y) the homotopy class of a. Then for some r ε N depending on m only, there exist a finite set E ⊂ Sm × Y and a mapping k: E(r) = {F ⊂ E: |F| ≤ r} → πm(Y) such that for each a ε B we have [a] = ∑FεE(r):F⊂Γ(a). Bibliography: 5 titles.",
author = "Podkorytov, {S. S.}",
year = "2007",
month = jan,
day = "1",
doi = "10.1007/s10958-007-0441-6",
language = "English",
volume = "140",
pages = "589--610",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "4",

}

RIS

TY - JOUR

T1 - Mappings of the sphere to a simply connected space

AU - Podkorytov, S. S.

PY - 2007/1/1

Y1 - 2007/1/1

N2 - Fix an m ε N, m ≥ 2. Let Y be a simply connected pointed CW-complex, and let B be a finite set of continuous mappings a: Sm → Y respecting the distinguished points. Let Γ(a) ⊂ Sm × Y be the graph of a, and we denote by [a] πm(Y) the homotopy class of a. Then for some r ε N depending on m only, there exist a finite set E ⊂ Sm × Y and a mapping k: E(r) = {F ⊂ E: |F| ≤ r} → πm(Y) such that for each a ε B we have [a] = ∑FεE(r):F⊂Γ(a). Bibliography: 5 titles.

AB - Fix an m ε N, m ≥ 2. Let Y be a simply connected pointed CW-complex, and let B be a finite set of continuous mappings a: Sm → Y respecting the distinguished points. Let Γ(a) ⊂ Sm × Y be the graph of a, and we denote by [a] πm(Y) the homotopy class of a. Then for some r ε N depending on m only, there exist a finite set E ⊂ Sm × Y and a mapping k: E(r) = {F ⊂ E: |F| ≤ r} → πm(Y) such that for each a ε B we have [a] = ∑FεE(r):F⊂Γ(a). Bibliography: 5 titles.

UR - http://www.scopus.com/inward/record.url?scp=33845799840&partnerID=8YFLogxK

U2 - 10.1007/s10958-007-0441-6

DO - 10.1007/s10958-007-0441-6

M3 - Article

AN - SCOPUS:33845799840

VL - 140

SP - 589

EP - 610

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 4

ER -

ID: 49886514