Standard

Majorants of meromorphic functions with fixed poles. / Baranov, A. D.; Borichev, A. A.; Havin, V. P.

In: Indiana University Mathematics Journal, Vol. 56, No. 4, 30.10.2007, p. 1595-1628.

Research output: Contribution to journalArticlepeer-review

Harvard

Baranov, AD, Borichev, AA & Havin, VP 2007, 'Majorants of meromorphic functions with fixed poles', Indiana University Mathematics Journal, vol. 56, no. 4, pp. 1595-1628. https://doi.org/10.1512/iumj.2007.56.3045

APA

Baranov, A. D., Borichev, A. A., & Havin, V. P. (2007). Majorants of meromorphic functions with fixed poles. Indiana University Mathematics Journal, 56(4), 1595-1628. https://doi.org/10.1512/iumj.2007.56.3045

Vancouver

Baranov AD, Borichev AA, Havin VP. Majorants of meromorphic functions with fixed poles. Indiana University Mathematics Journal. 2007 Oct 30;56(4):1595-1628. https://doi.org/10.1512/iumj.2007.56.3045

Author

Baranov, A. D. ; Borichev, A. A. ; Havin, V. P. / Majorants of meromorphic functions with fixed poles. In: Indiana University Mathematics Journal. 2007 ; Vol. 56, No. 4. pp. 1595-1628.

BibTeX

@article{8abfb5f4fd1e4b10a2ed2676efb9baa2,
title = "Majorants of meromorphic functions with fixed poles",
abstract = "Let B be a meromorphic Blaschke product in the upper half-plane with zeros Zn and let KB - H2 ⊖ BH2 be the associated model subspace of the Hardy space H2. A nonnegative function w on the real line is said to be an admissible majorant for K B if there is a non-zero function f ∈ KB such that |f| ≤ w a.e. on ℝ. We study the relations between the distribution of the zeros of a Blaschke product B and the class of admissible majorants for the space KB.",
keywords = "Admissible majorant, Blaschke product, Entire function, Hardy space, Hilbert transform, Meromorphic function, Model subspace",
author = "Baranov, {A. D.} and Borichev, {A. A.} and Havin, {V. P.}",
year = "2007",
month = oct,
day = "30",
doi = "10.1512/iumj.2007.56.3045",
language = "English",
volume = "56",
pages = "1595--1628",
journal = "Indiana University Mathematics Journal",
issn = "0022-2518",
publisher = "Indiana University",
number = "4",

}

RIS

TY - JOUR

T1 - Majorants of meromorphic functions with fixed poles

AU - Baranov, A. D.

AU - Borichev, A. A.

AU - Havin, V. P.

PY - 2007/10/30

Y1 - 2007/10/30

N2 - Let B be a meromorphic Blaschke product in the upper half-plane with zeros Zn and let KB - H2 ⊖ BH2 be the associated model subspace of the Hardy space H2. A nonnegative function w on the real line is said to be an admissible majorant for K B if there is a non-zero function f ∈ KB such that |f| ≤ w a.e. on ℝ. We study the relations between the distribution of the zeros of a Blaschke product B and the class of admissible majorants for the space KB.

AB - Let B be a meromorphic Blaschke product in the upper half-plane with zeros Zn and let KB - H2 ⊖ BH2 be the associated model subspace of the Hardy space H2. A nonnegative function w on the real line is said to be an admissible majorant for K B if there is a non-zero function f ∈ KB such that |f| ≤ w a.e. on ℝ. We study the relations between the distribution of the zeros of a Blaschke product B and the class of admissible majorants for the space KB.

KW - Admissible majorant

KW - Blaschke product

KW - Entire function

KW - Hardy space

KW - Hilbert transform

KW - Meromorphic function

KW - Model subspace

UR - http://www.scopus.com/inward/record.url?scp=35448956130&partnerID=8YFLogxK

U2 - 10.1512/iumj.2007.56.3045

DO - 10.1512/iumj.2007.56.3045

M3 - Article

AN - SCOPUS:35448956130

VL - 56

SP - 1595

EP - 1628

JO - Indiana University Mathematics Journal

JF - Indiana University Mathematics Journal

SN - 0022-2518

IS - 4

ER -

ID: 32722185