We present a microscopic theory of the magnetic field induced mixing of heavy-hole states ±3/2 in GaAs droplet dots grown on (111)A Ga-rich surfaces. The proposed theoretical model takes into account the striking dot shape with trigonal symmetry revealed in atomic force microscopy. Our calculations of the hole states are carried out within the Luttinger Hamiltonian formalism, supplemented with allowance for the triangularity of the confining potential. They are in quantitative agreement with the experimentally observed polarization selection rules, emission line intensities and energy splittings in both longitudinal and transverse magnetic fields for neutral and charged excitons in all measured single dots.

Original languageEnglish
Article number085315
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume87
Issue number8
DOIs
StatePublished - 22 Feb 2013

    Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

ID: 36371237