In several technical applications, for example, in the Arctic off-shore oil industry, it is necessary to predict waveguide properties of floating elastic plates in contact with a relatively thin layer of water, which has a non-uniform density distribution across its depth. The issue of particular concern is propagation of low-frequency waves in such a coupled waveguide. In the present paper, we assume that an inhomogeneous fluid may be modelled as two homogeneous, inviscid and incompressible layers with slightly different densities. The lighter layer of fresh water lies on top of the heavier layer of salty water. The former one produces fluid loading at the plate, whereas the latter one is bounded by the sea bottom. We employ classical asymptotic methods to identify significant regimes of wave motion in the compound three-component waveguide. The roles of parameters involved in the problem formulation, such as depths of the layers, stiffness and inertia of the plate, are assessed in several frequency ranges. Dispersion diagrams obtained from approximate dispersion relations are compared with their exact counterparts.

Original languageEnglish
Title of host publication19th International Congress on Sound and Vibration 2012, ICSV 2012
Pages1313-1320
Number of pages8
StatePublished - 2012
Event19th International Congress on Sound and Vibration 2012, ICSV 2012 - Vilnius, Lithuania
Duration: 8 Jul 201212 Jul 2012

Publication series

Name19th International Congress on Sound and Vibration 2012, ICSV 2012
Volume2

Conference

Conference19th International Congress on Sound and Vibration 2012, ICSV 2012
Country/TerritoryLithuania
CityVilnius
Period8/07/1212/07/12

    Scopus subject areas

  • Acoustics and Ultrasonics

ID: 75071474