Standard

Long root tori in chevalley groups. / Vavilov, N. A.; Semenov, A. A.

In: St. Petersburg Mathematical Journal, Vol. 24, No. 3, 16.05.2013, p. 387-430.

Research output: Contribution to journalArticlepeer-review

Harvard

Vavilov, NA & Semenov, AA 2013, 'Long root tori in chevalley groups', St. Petersburg Mathematical Journal, vol. 24, no. 3, pp. 387-430. https://doi.org/10.1090/S1061-0022-2013-01245-3

APA

Vavilov, N. A., & Semenov, A. A. (2013). Long root tori in chevalley groups. St. Petersburg Mathematical Journal, 24(3), 387-430. https://doi.org/10.1090/S1061-0022-2013-01245-3

Vancouver

Vavilov NA, Semenov AA. Long root tori in chevalley groups. St. Petersburg Mathematical Journal. 2013 May 16;24(3):387-430. https://doi.org/10.1090/S1061-0022-2013-01245-3

Author

Vavilov, N. A. ; Semenov, A. A. / Long root tori in chevalley groups. In: St. Petersburg Mathematical Journal. 2013 ; Vol. 24, No. 3. pp. 387-430.

BibTeX

@article{e27e928841cb449bbda9fb11a12dff21,
title = "Long root tori in chevalley groups",
abstract = "In this paper we study some remarkable semisimple elements of an (extended) Chevalley group that are diagonalizable over the ground field - the 'weight elements'. In particular, we calculate the Bruhat decomposition of microweight elements. Results of the present paper are crucial for the description of overgroups of split maximal tori in Chevalley groups.",
keywords = "Borel orbits, Bruhat decomposition, Chevalley groups, Parabolic subgroups with extraspecial unipotent radical, Semisimple root elements",
author = "Vavilov, {N. A.} and Semenov, {A. A.}",
year = "2013",
month = may,
day = "16",
doi = "10.1090/S1061-0022-2013-01245-3",
language = "English",
volume = "24",
pages = "387--430",
journal = "St. Petersburg Mathematical Journal",
issn = "1061-0022",
publisher = "American Mathematical Society",
number = "3",

}

RIS

TY - JOUR

T1 - Long root tori in chevalley groups

AU - Vavilov, N. A.

AU - Semenov, A. A.

PY - 2013/5/16

Y1 - 2013/5/16

N2 - In this paper we study some remarkable semisimple elements of an (extended) Chevalley group that are diagonalizable over the ground field - the 'weight elements'. In particular, we calculate the Bruhat decomposition of microweight elements. Results of the present paper are crucial for the description of overgroups of split maximal tori in Chevalley groups.

AB - In this paper we study some remarkable semisimple elements of an (extended) Chevalley group that are diagonalizable over the ground field - the 'weight elements'. In particular, we calculate the Bruhat decomposition of microweight elements. Results of the present paper are crucial for the description of overgroups of split maximal tori in Chevalley groups.

KW - Borel orbits

KW - Bruhat decomposition

KW - Chevalley groups

KW - Parabolic subgroups with extraspecial unipotent radical

KW - Semisimple root elements

UR - http://www.scopus.com/inward/record.url?scp=84877679687&partnerID=8YFLogxK

U2 - 10.1090/S1061-0022-2013-01245-3

DO - 10.1090/S1061-0022-2013-01245-3

M3 - Article

VL - 24

SP - 387

EP - 430

JO - St. Petersburg Mathematical Journal

JF - St. Petersburg Mathematical Journal

SN - 1061-0022

IS - 3

ER -

ID: 5416972