The problem of local parameter identifiability of an "input-output" system is considered. It is shown that if the dimension of the parameter space is not higher than that of the space of output signals, then a generic system is locally parameter identifiable for almost all values of the input signal and parameter. We give an example which illustrates that if the number of parameters exceeds the dimension of the output signal, then the corresponding assertion ceases to be true.

Original languageEnglish
Pages (from-to)61-64
Number of pages4
JournalVestnik St. Petersburg University: Mathematics
Volume45
Issue number2
DOIs
StatePublished - Apr 2012

    Scopus subject areas

  • Mathematics(all)

    Research areas

  • control system, genericity, parametric identifiability

ID: 74985930