Standard

Local characterization of polyhedral spaces. / Lebedeva, Nina; Petrunin, Anton.

In: Geometriae Dedicata, Vol. 179, No. 1, 01.12.2015, p. 161-168.

Research output: Contribution to journalArticlepeer-review

Harvard

Lebedeva, N & Petrunin, A 2015, 'Local characterization of polyhedral spaces', Geometriae Dedicata, vol. 179, no. 1, pp. 161-168. https://doi.org/10.1007/s10711-015-0072-x

APA

Lebedeva, N., & Petrunin, A. (2015). Local characterization of polyhedral spaces. Geometriae Dedicata, 179(1), 161-168. https://doi.org/10.1007/s10711-015-0072-x

Vancouver

Lebedeva N, Petrunin A. Local characterization of polyhedral spaces. Geometriae Dedicata. 2015 Dec 1;179(1):161-168. https://doi.org/10.1007/s10711-015-0072-x

Author

Lebedeva, Nina ; Petrunin, Anton. / Local characterization of polyhedral spaces. In: Geometriae Dedicata. 2015 ; Vol. 179, No. 1. pp. 161-168.

BibTeX

@article{58f4e6ad605140ca82444f3d4915f542,
title = "Local characterization of polyhedral spaces",
abstract = "We show that a compact length space is polyhedral if a small spherical neighborhood of any point is conic.",
keywords = "Conic neighborhoods, Metric simplicial complexes, Polyhedral space",
author = "Nina Lebedeva and Anton Petrunin",
year = "2015",
month = dec,
day = "1",
doi = "10.1007/s10711-015-0072-x",
language = "English",
volume = "179",
pages = "161--168",
journal = "Geometriae Dedicata",
issn = "0046-5755",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Local characterization of polyhedral spaces

AU - Lebedeva, Nina

AU - Petrunin, Anton

PY - 2015/12/1

Y1 - 2015/12/1

N2 - We show that a compact length space is polyhedral if a small spherical neighborhood of any point is conic.

AB - We show that a compact length space is polyhedral if a small spherical neighborhood of any point is conic.

KW - Conic neighborhoods

KW - Metric simplicial complexes

KW - Polyhedral space

UR - http://www.scopus.com/inward/record.url?scp=84947485958&partnerID=8YFLogxK

U2 - 10.1007/s10711-015-0072-x

DO - 10.1007/s10711-015-0072-x

M3 - Article

AN - SCOPUS:84947485958

VL - 179

SP - 161

EP - 168

JO - Geometriae Dedicata

JF - Geometriae Dedicata

SN - 0046-5755

IS - 1

ER -

ID: 10171634