Standard

Linear two-phase Venttsel problems. / Apushkinskaya, Darya E.; Nazarov, Aleksandr I.

In: Arkiv for Matematik, Vol. 39, No. 2, 01.01.2001, p. 201-222.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Apushkinskaya, Darya E. ; Nazarov, Aleksandr I. / Linear two-phase Venttsel problems. In: Arkiv for Matematik. 2001 ; Vol. 39, No. 2. pp. 201-222.

BibTeX

@article{cd43ca03d24f4a07a312bf0f079d65ca,
title = "Linear two-phase Venttsel problems",
abstract = "Abtract. A priori estimates are established for the two-phase boundary value problems with Venttsel interface conditions for linear nondivergent parabolic and elliptic equations. By these estimates, the existence and uniqueness theorems in Sobolev and H{\"o}lder spaces are proved.",
author = "Apushkinskaya, {Darya E.} and Nazarov, {Aleksandr I.}",
year = "2001",
month = jan,
day = "1",
doi = "10.1007/BF02384554",
language = "English",
volume = "39",
pages = "201--222",
journal = "Arkiv for Matematik",
issn = "0004-2080",
publisher = "International Press of Boston, Inc.",
number = "2",

}

RIS

TY - JOUR

T1 - Linear two-phase Venttsel problems

AU - Apushkinskaya, Darya E.

AU - Nazarov, Aleksandr I.

PY - 2001/1/1

Y1 - 2001/1/1

N2 - Abtract. A priori estimates are established for the two-phase boundary value problems with Venttsel interface conditions for linear nondivergent parabolic and elliptic equations. By these estimates, the existence and uniqueness theorems in Sobolev and Hölder spaces are proved.

AB - Abtract. A priori estimates are established for the two-phase boundary value problems with Venttsel interface conditions for linear nondivergent parabolic and elliptic equations. By these estimates, the existence and uniqueness theorems in Sobolev and Hölder spaces are proved.

UR - http://www.scopus.com/inward/record.url?scp=0040752757&partnerID=8YFLogxK

U2 - 10.1007/BF02384554

DO - 10.1007/BF02384554

M3 - Article

AN - SCOPUS:0040752757

VL - 39

SP - 201

EP - 222

JO - Arkiv for Matematik

JF - Arkiv for Matematik

SN - 0004-2080

IS - 2

ER -

ID: 45873865