Standard

Late Quaternary Paleoceanographic Settings in the Central Arctic Ocean as Revealed from the Composition of Coarse Grains on the Alpha-Mendeleev and Lomonosov Ridges. / Bazhenova , E.; Spielhagen, R.F.; Kudryavtseva, A.; Voronovich, E.; Stein, R.; Krylov, A.

AGU Fall Meeting 2017. 2017.

Research output: Chapter in Book/Report/Conference proceedingConference abstractspeer-review

Harvard

Bazhenova , E, Spielhagen, RF, Kudryavtseva, A, Voronovich, E, Stein, R & Krylov, A 2017, Late Quaternary Paleoceanographic Settings in the Central Arctic Ocean as Revealed from the Composition of Coarse Grains on the Alpha-Mendeleev and Lomonosov Ridges. in AGU Fall Meeting 2017. AGU Fall Meeting, New Orleans, United States, 11/12/17.

APA

Vancouver

Author

BibTeX

@inbook{543ae37b32bc4dbb97289c7fd12b0cf8,
title = "Late Quaternary Paleoceanographic Settings in the Central Arctic Ocean as Revealed from the Composition of Coarse Grains on the Alpha-Mendeleev and Lomonosov Ridges",
abstract = "In the central Arctic Ocean, circulation of surface oceanic currents and trajectories of sea-ice drift generally follow the two main systems, the Beaufort Gyre and the Transpolar Drift. The boundary between the two systems is located above the Lomonosov Ridge but might have been shifted over the Quaternary glacial/interglacial cycles due to changing water masses, sea-ice cover, and wind patterns. Changes in sediment core composition can provide information about the different source areas of material reaching the central part of the Arctic basin, and hence, about the driving paleaoceanographic settings. We will summarize results of completed and ongoing investigations performed on several sediment cores recovered by the German RV {"}Polarstern{"} in 2007, 2008, and 2014: PS72/340-5, and PS72/344-3 - on the Mendeleev Ridge; PS70/330-1, and PS70/342-1 - on the Alpha Ridge; PS87/023-1, PS87/030-1, PS87/056-1, and PS2185 - on the Lomonosov Ridge. We focused on the petrographic classification of coarse grains (>0.5 mm) isolated from the sediments. Identification of grain composition was done using an optical binocular. Additionally, grain surface was treated with HCL 10%-solution to check for the presence of detrital carbonates. Clast types were classified following published studies from the Mendeleev and Lomonosov ridges which utilized the same size fractions. The studied cores span the last two glacial/interglacial cycles (ca. 200 kyrs). On the Mendeleev Ridge, total grain counts decrease towards the East Siberian margin (from core PS72/340 to core PS72/344), similar to the bulk dolomite content and the amount of larger dropstones. Sediments are generally very fine-grained throughout the cores. Peaks of all clast types in these two cores are synchronous, probably indicating events of abrupt iceberg discharge. Morphometry of larger dropstones (>2 cm) in these cores clearly indicates iceberg transportation. In cores PS87/056-1 and PS87/070-1 (central Lomonosov Ridge), quartz and carbonate peaks are not observed simultaneously, which can be indicative of two different source areas supplying IRD to these core sites. Morphometry of larger dropstones (>2 cm) indicates both iceberg and sea-ice transport; some material holds evidence of riverine transportation.",
author = "E. Bazhenova and R.F. Spielhagen and A. Kudryavtseva and E. Voronovich and R. Stein and A. Krylov",
year = "2017",
language = "English",
booktitle = "AGU Fall Meeting 2017",
note = "AGU Fall Meeting ; Conference date: 11-12-2017 Through 15-12-2017",

}

RIS

TY - CHAP

T1 - Late Quaternary Paleoceanographic Settings in the Central Arctic Ocean as Revealed from the Composition of Coarse Grains on the Alpha-Mendeleev and Lomonosov Ridges

AU - Bazhenova , E.

AU - Spielhagen, R.F.

AU - Kudryavtseva, A.

AU - Voronovich, E.

AU - Stein, R.

AU - Krylov, A.

PY - 2017

Y1 - 2017

N2 - In the central Arctic Ocean, circulation of surface oceanic currents and trajectories of sea-ice drift generally follow the two main systems, the Beaufort Gyre and the Transpolar Drift. The boundary between the two systems is located above the Lomonosov Ridge but might have been shifted over the Quaternary glacial/interglacial cycles due to changing water masses, sea-ice cover, and wind patterns. Changes in sediment core composition can provide information about the different source areas of material reaching the central part of the Arctic basin, and hence, about the driving paleaoceanographic settings. We will summarize results of completed and ongoing investigations performed on several sediment cores recovered by the German RV "Polarstern" in 2007, 2008, and 2014: PS72/340-5, and PS72/344-3 - on the Mendeleev Ridge; PS70/330-1, and PS70/342-1 - on the Alpha Ridge; PS87/023-1, PS87/030-1, PS87/056-1, and PS2185 - on the Lomonosov Ridge. We focused on the petrographic classification of coarse grains (>0.5 mm) isolated from the sediments. Identification of grain composition was done using an optical binocular. Additionally, grain surface was treated with HCL 10%-solution to check for the presence of detrital carbonates. Clast types were classified following published studies from the Mendeleev and Lomonosov ridges which utilized the same size fractions. The studied cores span the last two glacial/interglacial cycles (ca. 200 kyrs). On the Mendeleev Ridge, total grain counts decrease towards the East Siberian margin (from core PS72/340 to core PS72/344), similar to the bulk dolomite content and the amount of larger dropstones. Sediments are generally very fine-grained throughout the cores. Peaks of all clast types in these two cores are synchronous, probably indicating events of abrupt iceberg discharge. Morphometry of larger dropstones (>2 cm) in these cores clearly indicates iceberg transportation. In cores PS87/056-1 and PS87/070-1 (central Lomonosov Ridge), quartz and carbonate peaks are not observed simultaneously, which can be indicative of two different source areas supplying IRD to these core sites. Morphometry of larger dropstones (>2 cm) indicates both iceberg and sea-ice transport; some material holds evidence of riverine transportation.

AB - In the central Arctic Ocean, circulation of surface oceanic currents and trajectories of sea-ice drift generally follow the two main systems, the Beaufort Gyre and the Transpolar Drift. The boundary between the two systems is located above the Lomonosov Ridge but might have been shifted over the Quaternary glacial/interglacial cycles due to changing water masses, sea-ice cover, and wind patterns. Changes in sediment core composition can provide information about the different source areas of material reaching the central part of the Arctic basin, and hence, about the driving paleaoceanographic settings. We will summarize results of completed and ongoing investigations performed on several sediment cores recovered by the German RV "Polarstern" in 2007, 2008, and 2014: PS72/340-5, and PS72/344-3 - on the Mendeleev Ridge; PS70/330-1, and PS70/342-1 - on the Alpha Ridge; PS87/023-1, PS87/030-1, PS87/056-1, and PS2185 - on the Lomonosov Ridge. We focused on the petrographic classification of coarse grains (>0.5 mm) isolated from the sediments. Identification of grain composition was done using an optical binocular. Additionally, grain surface was treated with HCL 10%-solution to check for the presence of detrital carbonates. Clast types were classified following published studies from the Mendeleev and Lomonosov ridges which utilized the same size fractions. The studied cores span the last two glacial/interglacial cycles (ca. 200 kyrs). On the Mendeleev Ridge, total grain counts decrease towards the East Siberian margin (from core PS72/340 to core PS72/344), similar to the bulk dolomite content and the amount of larger dropstones. Sediments are generally very fine-grained throughout the cores. Peaks of all clast types in these two cores are synchronous, probably indicating events of abrupt iceberg discharge. Morphometry of larger dropstones (>2 cm) in these cores clearly indicates iceberg transportation. In cores PS87/056-1 and PS87/070-1 (central Lomonosov Ridge), quartz and carbonate peaks are not observed simultaneously, which can be indicative of two different source areas supplying IRD to these core sites. Morphometry of larger dropstones (>2 cm) indicates both iceberg and sea-ice transport; some material holds evidence of riverine transportation.

UR - https://ui.adsabs.harvard.edu/abs/2017AGUFMPP51B1060B/abstract

UR - https://oceanrep.geomar.de/id/eprint/40616/

M3 - Conference abstracts

BT - AGU Fall Meeting 2017

T2 - AGU Fall Meeting

Y2 - 11 December 2017 through 15 December 2017

ER -

ID: 97767284