Research output: Contribution to journal › Article › peer-review
We study theoretically the size distributions of nanoparticles (islands, droplets, nanowires) whose time evolution obeys the kinetic rate equations with size-dependent condensation and evaporation rates. Different effects are studied which contribute to the size distribution broadening, including kinetic fluctuations, evaporation, nucleation delay, and size-dependent growth rates. Under rather general assumptions, an analytic form of the size distribution is obtained in terms of the natural variable s which equals the number of monomers in the nanoparticle. Green's function of the continuum rate equation is shown to be Gaussian, with the size-dependent variance. We consider particular examples of the size distributions in either linear growth systems (at a constant supersaturation) or classical nucleation theory with pumping (at a time-dependent supersaturation) and compare the spectrum broadening in terms of s versus the invariant variable ρ for which the regular growth rate is size independent. For the growth rate scaling with s as sα (with the growth index α between 0 and 1), the size distribution broadens for larger α in terms of s, while it narrows with α if presented in terms of ρ. We establish the conditions for obtaining a time-invariant size distribution over a given variable for different growth laws. This result applies for a wide range of systems and shows how the growth method can be optimized to narrow the size distribution over a required variable, for example, the volume, surface area, radius or length of a nanoparticle. An analysis of some concrete growth systems is presented from the viewpoint of the obtained results.
Original language | English |
---|---|
Article number | 012112 |
Number of pages | 12 |
Journal | Physical Review E |
Volume | 103 |
Issue number | 1 |
DOIs | |
State | Published - 13 Jan 2021 |
ID: 88771452