Standard

Λk femtoscopy in Pb-Pb collisions at sNN =2.76 TeV. / ALICE Collaboration.

In: Physical Review C, Vol. 103, No. 5, 055201, 05.05.2021.

Research output: Contribution to journalArticlepeer-review

Harvard

ALICE Collaboration 2021, 'Λk femtoscopy in Pb-Pb collisions at sNN =2.76 TeV', Physical Review C, vol. 103, no. 5, 055201. https://doi.org/10.1103/PhysRevC.103.055201

APA

ALICE Collaboration (2021). Λk femtoscopy in Pb-Pb collisions at sNN =2.76 TeV. Physical Review C, 103(5), [055201]. https://doi.org/10.1103/PhysRevC.103.055201

Vancouver

ALICE Collaboration. Λk femtoscopy in Pb-Pb collisions at sNN =2.76 TeV. Physical Review C. 2021 May 5;103(5). 055201. https://doi.org/10.1103/PhysRevC.103.055201

Author

ALICE Collaboration. / Λk femtoscopy in Pb-Pb collisions at sNN =2.76 TeV. In: Physical Review C. 2021 ; Vol. 103, No. 5.

BibTeX

@article{0b9aabcac6b443e384bff2c242c03cb2,
title = "Λk femtoscopy in Pb-Pb collisions at sNN =2.76 TeV",
abstract = "The first measurements of the scattering parameters of ΛK pairs in all three charge combinations (ΛK+, ΛK-, and ΛKS0) are presented. The results are achieved through a femtoscopic analysis of ΛK correlations in Pb-Pb collisions at sNN=2.76 TeV recorded by ALICE at the Large Hadron Collider. The femtoscopic correlations result from strong final-state interactions and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parameters for the particle pairs. Extensive studies with the THERMINATOR 2 event generator provide a good description of the nonfemtoscopic background, which results mainly from collective effects, with unprecedented precision. Furthermore, together with HIJING simulations, this model is used to account for contributions from residual correlations induced by feed-down from particle decays. The extracted scattering parameters indicate that the strong force is repulsive in the ΛK+ interaction and attractive in the ΛK- interaction. The data hint that the ΛKS0 interaction is attractive; however, the uncertainty of the result does not permit such a decisive conclusion. The results suggest an effect arising either from different quark-antiquark interactions between the pairs (ss¯ in ΛK+ and uū in ΛK-) or from different net strangeness for each system (S=0 for ΛK+, and S=-2 for ΛK-). Finally, the ΛK systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle Λ and K source distributions.",
keywords = "PARTICLES, PION",
author = "{ALICE Collaboration} and S. Acharya and D. Adamov{\'a} and A. Adler and J. Adolfsson and Aggarwal, {M. M.} and {Aglieri Rinella}, G. and M. Agnello and N. Agrawal and Z. Ahammed and S. Ahmad and Ahn, {S. U.} and Z. Akbar and A. Akindinov and M. Al-Turany and Alam, {S. N.} and Albuquerque, {D. S.D.} and D. Aleksandrov and B. Alessandro and Alfanda, {H. M.} and {Alfaro Molina}, R. and B. Ali and Y. Ali and A. Alici and A. Alkin and J. Alme and T. Alt and L. Altenkamper and I. Altsybeev and Anaam, {M. N.} and C. Andrei and D. Andreou and A. Andronic and M. Angeletti and V. Anguelov and C. Anson and T. Anti{\v c}i{\'c} and F. Antinori and P. Antonioli and N. Apadula and L. Aphecetche and H. Appelsh{\"a}user and S. Arcelli and A. Erokhin and G. Feofilov and V. Kovalenko and T. Lazareva and D. Nesterov and V. Vechernin and A. Zarochentsev and V. Zherebchevskii",
note = "Publisher Copyright: {\textcopyright} 2021 CERN. ",
year = "2021",
month = may,
day = "5",
doi = "10.1103/PhysRevC.103.055201",
language = "English",
volume = "103",
journal = "Physical Review C - Nuclear Physics",
issn = "0556-2813",
publisher = "American Physical Society",
number = "5",

}

RIS

TY - JOUR

T1 - Λk femtoscopy in Pb-Pb collisions at sNN =2.76 TeV

AU - ALICE Collaboration

AU - Acharya, S.

AU - Adamová, D.

AU - Adler, A.

AU - Adolfsson, J.

AU - Aggarwal, M. M.

AU - Aglieri Rinella, G.

AU - Agnello, M.

AU - Agrawal, N.

AU - Ahammed, Z.

AU - Ahmad, S.

AU - Ahn, S. U.

AU - Akbar, Z.

AU - Akindinov, A.

AU - Al-Turany, M.

AU - Alam, S. N.

AU - Albuquerque, D. S.D.

AU - Aleksandrov, D.

AU - Alessandro, B.

AU - Alfanda, H. M.

AU - Alfaro Molina, R.

AU - Ali, B.

AU - Ali, Y.

AU - Alici, A.

AU - Alkin, A.

AU - Alme, J.

AU - Alt, T.

AU - Altenkamper, L.

AU - Altsybeev, I.

AU - Anaam, M. N.

AU - Andrei, C.

AU - Andreou, D.

AU - Andronic, A.

AU - Angeletti, M.

AU - Anguelov, V.

AU - Anson, C.

AU - Antičić, T.

AU - Antinori, F.

AU - Antonioli, P.

AU - Apadula, N.

AU - Aphecetche, L.

AU - Appelshäuser, H.

AU - Arcelli, S.

AU - Erokhin, A.

AU - Feofilov, G.

AU - Kovalenko, V.

AU - Lazareva, T.

AU - Nesterov, D.

AU - Vechernin, V.

AU - Zarochentsev, A.

AU - Zherebchevskii, V.

N1 - Publisher Copyright: © 2021 CERN.

PY - 2021/5/5

Y1 - 2021/5/5

N2 - The first measurements of the scattering parameters of ΛK pairs in all three charge combinations (ΛK+, ΛK-, and ΛKS0) are presented. The results are achieved through a femtoscopic analysis of ΛK correlations in Pb-Pb collisions at sNN=2.76 TeV recorded by ALICE at the Large Hadron Collider. The femtoscopic correlations result from strong final-state interactions and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parameters for the particle pairs. Extensive studies with the THERMINATOR 2 event generator provide a good description of the nonfemtoscopic background, which results mainly from collective effects, with unprecedented precision. Furthermore, together with HIJING simulations, this model is used to account for contributions from residual correlations induced by feed-down from particle decays. The extracted scattering parameters indicate that the strong force is repulsive in the ΛK+ interaction and attractive in the ΛK- interaction. The data hint that the ΛKS0 interaction is attractive; however, the uncertainty of the result does not permit such a decisive conclusion. The results suggest an effect arising either from different quark-antiquark interactions between the pairs (ss¯ in ΛK+ and uū in ΛK-) or from different net strangeness for each system (S=0 for ΛK+, and S=-2 for ΛK-). Finally, the ΛK systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle Λ and K source distributions.

AB - The first measurements of the scattering parameters of ΛK pairs in all three charge combinations (ΛK+, ΛK-, and ΛKS0) are presented. The results are achieved through a femtoscopic analysis of ΛK correlations in Pb-Pb collisions at sNN=2.76 TeV recorded by ALICE at the Large Hadron Collider. The femtoscopic correlations result from strong final-state interactions and are fit with a parametrization allowing for both the characterization of the pair emission source and the measurement of the scattering parameters for the particle pairs. Extensive studies with the THERMINATOR 2 event generator provide a good description of the nonfemtoscopic background, which results mainly from collective effects, with unprecedented precision. Furthermore, together with HIJING simulations, this model is used to account for contributions from residual correlations induced by feed-down from particle decays. The extracted scattering parameters indicate that the strong force is repulsive in the ΛK+ interaction and attractive in the ΛK- interaction. The data hint that the ΛKS0 interaction is attractive; however, the uncertainty of the result does not permit such a decisive conclusion. The results suggest an effect arising either from different quark-antiquark interactions between the pairs (ss¯ in ΛK+ and uū in ΛK-) or from different net strangeness for each system (S=0 for ΛK+, and S=-2 for ΛK-). Finally, the ΛK systems exhibit source radii larger than expected from extrapolation from identical particle femtoscopic studies. This effect is interpreted as resulting from the separation in space-time of the single-particle Λ and K source distributions.

KW - PARTICLES

KW - PION

UR - http://www.scopus.com/inward/record.url?scp=85106384742&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/8a0ecf77-7c6f-3d8f-bce4-d9ab8ae76f00/

U2 - 10.1103/PhysRevC.103.055201

DO - 10.1103/PhysRevC.103.055201

M3 - Article

AN - SCOPUS:85106384742

VL - 103

JO - Physical Review C - Nuclear Physics

JF - Physical Review C - Nuclear Physics

SN - 0556-2813

IS - 5

M1 - 055201

ER -

ID: 85639030