Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
INVERSE SPECTRAL PROBLEM FOR THE ONE-DIMENSIONAL DIRAC SYSTEM ON GRAPHS. / Mikhaylov, Alexander; Mikhaylov, Victor; Murzabekova, Gulden.
XXIX Крымская Осенняя Математическая Школа-симпозиум по спектральным и эволюционным задачам : Сборник материалов международной конференции КРОМШ-2018. Полипринт, 2018. p. 68-70.Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
}
TY - GEN
T1 - INVERSE SPECTRAL PROBLEM FOR THE ONE-DIMENSIONAL DIRAC SYSTEM ON GRAPHS
AU - Mikhaylov, Alexander
AU - Mikhaylov, Victor
AU - Murzabekova, Gulden
N1 - https://elibrary.ru/item.asp?id=36502817
PY - 2018
Y1 - 2018
N2 - We consider the inverse dynamic and spectral problems for the one dimensional Dirac system on a finite tree. Our aim will be to recover the topology of a tree (lengths and connectivity of edges) as well as matrix potentials on each edge. As inverse data we use the Weyl-Titchmarsh matrix function or the dynamic response operator.
AB - We consider the inverse dynamic and spectral problems for the one dimensional Dirac system on a finite tree. Our aim will be to recover the topology of a tree (lengths and connectivity of edges) as well as matrix potentials on each edge. As inverse data we use the Weyl-Titchmarsh matrix function or the dynamic response operator.
KW - QUANTUM GRAPH
KW - METRIC GRAPH
KW - REGULARITY
KW - controllability
KW - CONTROL PROBLEMS FOR TREES
UR - http://kromsh.info/files/abstracts/abstracts-2018-p2.pdf
UR - https://elibrary.ru/item.asp?id=36502817&pff=1
M3 - Conference contribution
SN - 9785604113370
SP - 68
EP - 70
BT - XXIX Крымская Осенняя Математическая Школа-симпозиум по спектральным и эволюционным задачам
PB - Полипринт
Y2 - 17 September 2018 through 29 September 2018
ER -
ID: 46337189