Research output: Contribution to journal › Article
Inverse problems and sharp eigenvalue asymptotics for Euler-Bernoulli operators. / Badanin, A.; Korotyaev, E.
In: Inverse Problems, Vol. 31, No. 5, 2015, p. 055004_1-37.Research output: Contribution to journal › Article
}
TY - JOUR
T1 - Inverse problems and sharp eigenvalue asymptotics for Euler-Bernoulli operators
AU - Badanin, A.
AU - Korotyaev, E.
PY - 2015
Y1 - 2015
N2 - We consider Euler-Bernoulli operators with real coefficients on the unit interval. We prove the following results: i) Ambarzumyan type theorem about the inverse problems for the Euler-Bernoulli operator. ii) The sharp asymptotics of eigenvalues for the Euler-Bernoulli operator when its coefficients converge to the constant function. iii) The sharp eigenvalue asymptotics both for the Euler-Bernoulli operator and fourth order operators (with complex coefficients) on the unit interval at high energy.
AB - We consider Euler-Bernoulli operators with real coefficients on the unit interval. We prove the following results: i) Ambarzumyan type theorem about the inverse problems for the Euler-Bernoulli operator. ii) The sharp asymptotics of eigenvalues for the Euler-Bernoulli operator when its coefficients converge to the constant function. iii) The sharp eigenvalue asymptotics both for the Euler-Bernoulli operator and fourth order operators (with complex coefficients) on the unit interval at high energy.
KW - Euler-Bernoulli operator
KW - fourth order operator
KW - inverse problem
KW - eigenvalue asymptotics
U2 - 10.1088/0266-5611/31/5/055004
DO - 10.1088/0266-5611/31/5/055004
M3 - Article
VL - 31
SP - 055004_1-37
JO - Inverse Problems
JF - Inverse Problems
SN - 0266-5611
IS - 5
ER -
ID: 3930795