Standard

Intersections of Zipf random sets: Maximal weighted relevance. / Лифшиц, Михаил Анатольевич; Лялинов, Иван Михайлович.

In: Statistics and Probability Letters, Vol. 208, 110050, 01.05.2024.

Research output: Contribution to journalArticlepeer-review

Harvard

Лифшиц, МА & Лялинов, ИМ 2024, 'Intersections of Zipf random sets: Maximal weighted relevance', Statistics and Probability Letters, vol. 208, 110050. https://doi.org/10.1016/j.spl.2024.110050

APA

Лифшиц, М. А., & Лялинов, И. М. (2024). Intersections of Zipf random sets: Maximal weighted relevance. Statistics and Probability Letters, 208, [110050]. https://doi.org/10.1016/j.spl.2024.110050

Vancouver

Лифшиц МА, Лялинов ИМ. Intersections of Zipf random sets: Maximal weighted relevance. Statistics and Probability Letters. 2024 May 1;208. 110050. https://doi.org/10.1016/j.spl.2024.110050

Author

Лифшиц, Михаил Анатольевич ; Лялинов, Иван Михайлович. / Intersections of Zipf random sets: Maximal weighted relevance. In: Statistics and Probability Letters. 2024 ; Vol. 208.

BibTeX

@article{90fff14802184b3e8e92ff81fa33deed,
title = "Intersections of Zipf random sets: Maximal weighted relevance",
abstract = "We study the asymptotic behavior of the maximal weighted relevance of the intersection of Zipf random sets and show that in the case of power weights it obeys the same limit theorem as the maximal relevance defined by the rarest elements of intersections.",
keywords = "Intersection queries, Weighted relevance, Zipf sets",
author = "Лифшиц, {Михаил Анатольевич} and Лялинов, {Иван Михайлович}",
year = "2024",
month = may,
day = "1",
doi = "10.1016/j.spl.2024.110050",
language = "English",
volume = "208",
journal = "Statistics and Probability Letters",
issn = "0167-7152",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - Intersections of Zipf random sets: Maximal weighted relevance

AU - Лифшиц, Михаил Анатольевич

AU - Лялинов, Иван Михайлович

PY - 2024/5/1

Y1 - 2024/5/1

N2 - We study the asymptotic behavior of the maximal weighted relevance of the intersection of Zipf random sets and show that in the case of power weights it obeys the same limit theorem as the maximal relevance defined by the rarest elements of intersections.

AB - We study the asymptotic behavior of the maximal weighted relevance of the intersection of Zipf random sets and show that in the case of power weights it obeys the same limit theorem as the maximal relevance defined by the rarest elements of intersections.

KW - Intersection queries

KW - Weighted relevance

KW - Zipf sets

UR - https://www.mendeley.com/catalogue/1b0148d1-6f95-3810-82d2-29ec15265973/

U2 - 10.1016/j.spl.2024.110050

DO - 10.1016/j.spl.2024.110050

M3 - Article

VL - 208

JO - Statistics and Probability Letters

JF - Statistics and Probability Letters

SN - 0167-7152

M1 - 110050

ER -

ID: 116264138