Let Bσ be the Bernstein space of entire functions of exponential type at most σ bounded on the real axis. Consider a sequence Λ = {zn}n∈ℤ, zn = xn + iyn, such that xn+1 − xn ≥ l > 0 and |yn| ≤ L, n ∈ ℤ. Using approximation by functions from Bσ, we prove that for any bounded sequence A = {an}n∈ℤ, |an| ≤ M, n ∈ ℤ, there exists a function f ∈ Bσ with σ ≤ σ0(l,L) such that f|Λ = A.
Original languageEnglish
Pages (from-to)965-980
Number of pages16
JournalJournal of Mathematical Sciences
Volume243
Issue number6
Early online date18 Nov 2019
StatePublished - 2019

    Scopus subject areas

  • Mathematics(all)

ID: 49022724