Standard

Interplay of a nitro group and metal ions: from coordinative binding to noncovalent semicoordination. / Суслонов, Виталий Валерьевич; Солдатова, Наталья; Иванов, Даниил Михайлович; Постников, П.С.; Гомила, Роза М.; Frontera, Antonio; Семенов, Артем Валерьевич; Кукушкин, Вадим Юрьевич; Бокач, Надежда Арсеньевна.

In: Inorganic Chemistry Frontiers, 15.05.2024.

Research output: Contribution to journalArticlepeer-review

Harvard

Суслонов, ВВ, Солдатова, Н, Иванов, ДМ, Постников, ПС, Гомила, РМ, Frontera, A, Семенов, АВ, Кукушкин, ВЮ & Бокач, НА 2024, 'Interplay of a nitro group and metal ions: from coordinative binding to noncovalent semicoordination', Inorganic Chemistry Frontiers. https://doi.org/10.1039/d4qi00351a

APA

Суслонов, В. В., Солдатова, Н., Иванов, Д. М., Постников, П. С., Гомила, Р. М., Frontera, A., Семенов, А. В., Кукушкин, В. Ю., & Бокач, Н. А. (2024). Interplay of a nitro group and metal ions: from coordinative binding to noncovalent semicoordination. Inorganic Chemistry Frontiers. https://doi.org/10.1039/d4qi00351a

Vancouver

Суслонов ВВ, Солдатова Н, Иванов ДМ, Постников ПС, Гомила РМ, Frontera A et al. Interplay of a nitro group and metal ions: from coordinative binding to noncovalent semicoordination. Inorganic Chemistry Frontiers. 2024 May 15. https://doi.org/10.1039/d4qi00351a

Author

Суслонов, Виталий Валерьевич ; Солдатова, Наталья ; Иванов, Даниил Михайлович ; Постников, П.С. ; Гомила, Роза М. ; Frontera, Antonio ; Семенов, Артем Валерьевич ; Кукушкин, Вадим Юрьевич ; Бокач, Надежда Арсеньевна. / Interplay of a nitro group and metal ions: from coordinative binding to noncovalent semicoordination. In: Inorganic Chemistry Frontiers. 2024.

BibTeX

@article{dab681f3a757438cb6f963b6b906d2ad,
title = "Interplay of a nitro group and metal ions: from coordinative binding to noncovalent semicoordination",
abstract = "The characteristic feature of the solid-state structures of the iodonium Group 10 tetracyanidometallates [Ar1Ar2I]2[Ni(CN)4]·CH2Cl2 (Ar1/Ar2 = 2,4,6-(MeO)3C6H2/4-NO2-C6H4; 1·CH2Cl2), [Ar1R2I]2[Pd(CN)4]·MeNO2 (2·MeNO2), and [Ar1Ar2I]2[Pt(CN)4]·MeNO2 (3·MeNO2) is the presence of M···ONO2 semicoordination occurred...The characteristic feature of the solid-state structures of the iodonium Group 10 tetracyanidometallates [Ar1Ar2I]2[Ni(CN)4]·CH2Cl2 (Ar1/Ar2 = 2,4,6-(MeO)3C6H2/4-NO2-C6H4; 1·CH2Cl2), [Ar1R2I]2[Pd(CN)4]·MeNO2 (2·MeNO2), and [Ar1Ar2I]2[Pt(CN)4]·MeNO2 (3·MeNO2) is the presence of M···ONO2 semicoordination occurred between any one of the metal sites and the nitroaryl-group. Although there should be a continuum between covalent and noncovalent interactions, both in geometry and bonding description, we succeeded to identify interatomic distances and the corresponding intervals, which are responsible for covalent (2.0–2.3 {\AA}) and noncovalent (>2.5 {\AA}) bindings of various nitro-groups. The geometric parameters of the three structures are in good agreement with the latter range. The noncovalent interactions, including the M···ONO2 interactions and I+···NC–M(CN)3 halogen bonds (HaB), were explored using DFT calculations. Several computational techniques, such as molecular electrostatic potential (MEP) surfaces, QTAIM/NCIplot topological analysis, natural bond orbital (NBO), and energy decomposition analysis (EDA using the Kitaura–Morokuma method) were employed to comprehensively characterize these interactions. Theoretical insights revealed that both M···ONO2 and HaB interactions significantly affect the molecular structures. In-depth examinations using NBO and EDA methods highlighted the predominant influence of electrostatic effects and confirmed the LP(ONO2)→σ*(M–C) charge transfer. This study is the first that found a place of the NO2-group semicoordination in the palette of metal-involving interactions of a nitro-group.",
author = "Суслонов, {Виталий Валерьевич} and Наталья Солдатова and Иванов, {Даниил Михайлович} and П.С. Постников and Гомила, {Роза М.} and Antonio Frontera and Семенов, {Артем Валерьевич} and Кукушкин, {Вадим Юрьевич} and Бокач, {Надежда Арсеньевна}",
year = "2024",
month = may,
day = "15",
doi = "10.1039/d4qi00351a",
language = "English",
journal = "Inorganic Chemistry Frontiers",
issn = "2052-1545",
publisher = "Royal Society of Chemistry",

}

RIS

TY - JOUR

T1 - Interplay of a nitro group and metal ions: from coordinative binding to noncovalent semicoordination

AU - Суслонов, Виталий Валерьевич

AU - Солдатова, Наталья

AU - Иванов, Даниил Михайлович

AU - Постников, П.С.

AU - Гомила, Роза М.

AU - Frontera, Antonio

AU - Семенов, Артем Валерьевич

AU - Кукушкин, Вадим Юрьевич

AU - Бокач, Надежда Арсеньевна

PY - 2024/5/15

Y1 - 2024/5/15

N2 - The characteristic feature of the solid-state structures of the iodonium Group 10 tetracyanidometallates [Ar1Ar2I]2[Ni(CN)4]·CH2Cl2 (Ar1/Ar2 = 2,4,6-(MeO)3C6H2/4-NO2-C6H4; 1·CH2Cl2), [Ar1R2I]2[Pd(CN)4]·MeNO2 (2·MeNO2), and [Ar1Ar2I]2[Pt(CN)4]·MeNO2 (3·MeNO2) is the presence of M···ONO2 semicoordination occurred...The characteristic feature of the solid-state structures of the iodonium Group 10 tetracyanidometallates [Ar1Ar2I]2[Ni(CN)4]·CH2Cl2 (Ar1/Ar2 = 2,4,6-(MeO)3C6H2/4-NO2-C6H4; 1·CH2Cl2), [Ar1R2I]2[Pd(CN)4]·MeNO2 (2·MeNO2), and [Ar1Ar2I]2[Pt(CN)4]·MeNO2 (3·MeNO2) is the presence of M···ONO2 semicoordination occurred between any one of the metal sites and the nitroaryl-group. Although there should be a continuum between covalent and noncovalent interactions, both in geometry and bonding description, we succeeded to identify interatomic distances and the corresponding intervals, which are responsible for covalent (2.0–2.3 Å) and noncovalent (>2.5 Å) bindings of various nitro-groups. The geometric parameters of the three structures are in good agreement with the latter range. The noncovalent interactions, including the M···ONO2 interactions and I+···NC–M(CN)3 halogen bonds (HaB), were explored using DFT calculations. Several computational techniques, such as molecular electrostatic potential (MEP) surfaces, QTAIM/NCIplot topological analysis, natural bond orbital (NBO), and energy decomposition analysis (EDA using the Kitaura–Morokuma method) were employed to comprehensively characterize these interactions. Theoretical insights revealed that both M···ONO2 and HaB interactions significantly affect the molecular structures. In-depth examinations using NBO and EDA methods highlighted the predominant influence of electrostatic effects and confirmed the LP(ONO2)→σ*(M–C) charge transfer. This study is the first that found a place of the NO2-group semicoordination in the palette of metal-involving interactions of a nitro-group.

AB - The characteristic feature of the solid-state structures of the iodonium Group 10 tetracyanidometallates [Ar1Ar2I]2[Ni(CN)4]·CH2Cl2 (Ar1/Ar2 = 2,4,6-(MeO)3C6H2/4-NO2-C6H4; 1·CH2Cl2), [Ar1R2I]2[Pd(CN)4]·MeNO2 (2·MeNO2), and [Ar1Ar2I]2[Pt(CN)4]·MeNO2 (3·MeNO2) is the presence of M···ONO2 semicoordination occurred...The characteristic feature of the solid-state structures of the iodonium Group 10 tetracyanidometallates [Ar1Ar2I]2[Ni(CN)4]·CH2Cl2 (Ar1/Ar2 = 2,4,6-(MeO)3C6H2/4-NO2-C6H4; 1·CH2Cl2), [Ar1R2I]2[Pd(CN)4]·MeNO2 (2·MeNO2), and [Ar1Ar2I]2[Pt(CN)4]·MeNO2 (3·MeNO2) is the presence of M···ONO2 semicoordination occurred between any one of the metal sites and the nitroaryl-group. Although there should be a continuum between covalent and noncovalent interactions, both in geometry and bonding description, we succeeded to identify interatomic distances and the corresponding intervals, which are responsible for covalent (2.0–2.3 Å) and noncovalent (>2.5 Å) bindings of various nitro-groups. The geometric parameters of the three structures are in good agreement with the latter range. The noncovalent interactions, including the M···ONO2 interactions and I+···NC–M(CN)3 halogen bonds (HaB), were explored using DFT calculations. Several computational techniques, such as molecular electrostatic potential (MEP) surfaces, QTAIM/NCIplot topological analysis, natural bond orbital (NBO), and energy decomposition analysis (EDA using the Kitaura–Morokuma method) were employed to comprehensively characterize these interactions. Theoretical insights revealed that both M···ONO2 and HaB interactions significantly affect the molecular structures. In-depth examinations using NBO and EDA methods highlighted the predominant influence of electrostatic effects and confirmed the LP(ONO2)→σ*(M–C) charge transfer. This study is the first that found a place of the NO2-group semicoordination in the palette of metal-involving interactions of a nitro-group.

UR - https://www.mendeley.com/catalogue/c62949e6-cc20-34cc-9ac9-19c8b73e77c2/

U2 - 10.1039/d4qi00351a

DO - 10.1039/d4qi00351a

M3 - Article

JO - Inorganic Chemistry Frontiers

JF - Inorganic Chemistry Frontiers

SN - 2052-1545

ER -

ID: 120048341