Standard

Integer Linear-Exponential Programming in NP by Quantifier Elimination. / Старчак, Михаил Романович; Chistikov, Dmitry; Mansutti, Alessio.

In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2024. 132 (Leibniz International Proceedings in Informatics (LIPIcs); Vol. 297).

Research output: Chapter in Book/Report/Conference proceedingConference contributionResearchpeer-review

Harvard

Старчак, МР, Chistikov, D & Mansutti, A 2024, Integer Linear-Exponential Programming in NP by Quantifier Elimination. in In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)., 132, Leibniz International Proceedings in Informatics (LIPIcs), vol. 297, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, International Colloquium on Automata, Languages, and Programming 2024, Tallinn, Estonia, 8/07/24. https://doi.org/10.4230/LIPIcs.ICALP.2024.132

APA

Старчак, М. Р., Chistikov, D., & Mansutti, A. (2024). Integer Linear-Exponential Programming in NP by Quantifier Elimination. In In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024) [132] (Leibniz International Proceedings in Informatics (LIPIcs); Vol. 297). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.ICALP.2024.132

Vancouver

Старчак МР, Chistikov D, Mansutti A. Integer Linear-Exponential Programming in NP by Quantifier Elimination. In In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2024. 132. (Leibniz International Proceedings in Informatics (LIPIcs)). https://doi.org/10.4230/LIPIcs.ICALP.2024.132

Author

Старчак, Михаил Романович ; Chistikov, Dmitry ; Mansutti, Alessio. / Integer Linear-Exponential Programming in NP by Quantifier Elimination. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2024. (Leibniz International Proceedings in Informatics (LIPIcs)).

BibTeX

@inproceedings{ecc1e9c2bdf744749aa048bbda02b974,
title = "Integer Linear-Exponential Programming in NP by Quantifier Elimination",
abstract = "This paper provides an NP procedure that decides whether a linear-exponential system of constraints has an integer solution. Linear-exponential systems extend standard integer linear programs with exponential terms 2x and remainder terms (x mod 2y). Our result implies that the existential theory of the structure (N, 0, 1, +, 2(·), V2(·, ·), ≤) has an NP-complete satisfiability problem, thus improving upon a recent ExpSpace upper bound. This theory extends the existential fragment of Presburger arithmetic with the exponentiation function x 7→ 2x and the binary predicate V2(x, y) that is true whenever y ≥ 1 is the largest power of 2 dividing x. Our procedure for solving linear-exponential systems uses the method of quantifier elimination. As a by-product, we modify the classical Gaussian variable elimination into a non-deterministic polynomial-time procedure for integer linear programming (or: existential Presburger arithmetic).",
keywords = "decision procedures, integer programming, quantifier elimination",
author = "Старчак, {Михаил Романович} and Dmitry Chistikov and Alessio Mansutti",
year = "2024",
month = jul,
day = "1",
doi = "10.4230/LIPIcs.ICALP.2024.132",
language = "English",
isbn = "9783959773225",
series = "Leibniz International Proceedings in Informatics (LIPIcs)",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",
booktitle = "In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)",
address = "Germany",
note = "null ; Conference date: 08-07-2024 Through 12-07-2024",
url = "https://compose.ioc.ee/icalp2024/",

}

RIS

TY - GEN

T1 - Integer Linear-Exponential Programming in NP by Quantifier Elimination

AU - Старчак, Михаил Романович

AU - Chistikov, Dmitry

AU - Mansutti, Alessio

N1 - Conference code: 51

PY - 2024/7/1

Y1 - 2024/7/1

N2 - This paper provides an NP procedure that decides whether a linear-exponential system of constraints has an integer solution. Linear-exponential systems extend standard integer linear programs with exponential terms 2x and remainder terms (x mod 2y). Our result implies that the existential theory of the structure (N, 0, 1, +, 2(·), V2(·, ·), ≤) has an NP-complete satisfiability problem, thus improving upon a recent ExpSpace upper bound. This theory extends the existential fragment of Presburger arithmetic with the exponentiation function x 7→ 2x and the binary predicate V2(x, y) that is true whenever y ≥ 1 is the largest power of 2 dividing x. Our procedure for solving linear-exponential systems uses the method of quantifier elimination. As a by-product, we modify the classical Gaussian variable elimination into a non-deterministic polynomial-time procedure for integer linear programming (or: existential Presburger arithmetic).

AB - This paper provides an NP procedure that decides whether a linear-exponential system of constraints has an integer solution. Linear-exponential systems extend standard integer linear programs with exponential terms 2x and remainder terms (x mod 2y). Our result implies that the existential theory of the structure (N, 0, 1, +, 2(·), V2(·, ·), ≤) has an NP-complete satisfiability problem, thus improving upon a recent ExpSpace upper bound. This theory extends the existential fragment of Presburger arithmetic with the exponentiation function x 7→ 2x and the binary predicate V2(x, y) that is true whenever y ≥ 1 is the largest power of 2 dividing x. Our procedure for solving linear-exponential systems uses the method of quantifier elimination. As a by-product, we modify the classical Gaussian variable elimination into a non-deterministic polynomial-time procedure for integer linear programming (or: existential Presburger arithmetic).

KW - decision procedures

KW - integer programming

KW - quantifier elimination

UR - https://www.mendeley.com/catalogue/b487af40-ad13-3081-8019-158f5f2e9131/

U2 - 10.4230/LIPIcs.ICALP.2024.132

DO - 10.4230/LIPIcs.ICALP.2024.132

M3 - Conference contribution

SN - 9783959773225

T3 - Leibniz International Proceedings in Informatics (LIPIcs)

BT - In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

Y2 - 8 July 2024 through 12 July 2024

ER -

ID: 121734407