Standard

Inner functions on spaces of homogeneous type. / Александров, Алексей Борисович.

In: Journal of Soviet Mathematics, Vol. 27, No. 1, 10.1984, p. 2433-2437.

Research output: Contribution to journalArticlepeer-review

Harvard

Александров, АБ 1984, 'Inner functions on spaces of homogeneous type', Journal of Soviet Mathematics, vol. 27, no. 1, pp. 2433-2437. https://doi.org/10.1007/BF01474134

APA

Vancouver

Author

Александров, Алексей Борисович. / Inner functions on spaces of homogeneous type. In: Journal of Soviet Mathematics. 1984 ; Vol. 27, No. 1. pp. 2433-2437.

BibTeX

@article{7d6b101c37034e6ba7fc7db734a0fd19,
title = "Inner functions on spaces of homogeneous type",
abstract = "One shows that the methods of M. Hakim, N. Sibony, and E. L{\o}w, used by them for the construction of inner functions in a sphere, can be applied also in a more general situation. The fundamental result of the paper is: For any positive continuous function H on the unit sphere S of the space ℝd, there exists a real function u, harmonic in the unit ball[Figure not available: see fulltext.], such that the function ∇u is bounded in B and |∇u| =H almost everywhere on S.",
author = "Александров, {Алексей Борисович}",
year = "1984",
month = oct,
doi = "10.1007/BF01474134",
language = "English",
volume = "27",
pages = "2433--2437",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - Inner functions on spaces of homogeneous type

AU - Александров, Алексей Борисович

PY - 1984/10

Y1 - 1984/10

N2 - One shows that the methods of M. Hakim, N. Sibony, and E. Løw, used by them for the construction of inner functions in a sphere, can be applied also in a more general situation. The fundamental result of the paper is: For any positive continuous function H on the unit sphere S of the space ℝd, there exists a real function u, harmonic in the unit ball[Figure not available: see fulltext.], such that the function ∇u is bounded in B and |∇u| =H almost everywhere on S.

AB - One shows that the methods of M. Hakim, N. Sibony, and E. Løw, used by them for the construction of inner functions in a sphere, can be applied also in a more general situation. The fundamental result of the paper is: For any positive continuous function H on the unit sphere S of the space ℝd, there exists a real function u, harmonic in the unit ball[Figure not available: see fulltext.], such that the function ∇u is bounded in B and |∇u| =H almost everywhere on S.

UR - http://www.scopus.com/inward/record.url?scp=34250139782&partnerID=8YFLogxK

U2 - 10.1007/BF01474134

DO - 10.1007/BF01474134

M3 - Article

AN - SCOPUS:34250139782

VL - 27

SP - 2433

EP - 2437

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 1

ER -

ID: 87313613