Research output: Contribution to journal › Article › peer-review
Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics : revised. / Calisto, M.; Usoskin, I.; Rozanov, E.
In: Environmental Research Letters, Vol. 8, No. 4, 045010, 2013.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics
T2 - revised
AU - Calisto, M.
AU - Usoskin, I.
AU - Rozanov, E.
PY - 2013
Y1 - 2013
N2 - This study investigates the influence of a major solar proton event (SPE) similar to the Carrington event of 1-2 September 1859 by means of the 3D chemistry climate model (CCM) SOCOL v2.0. Ionization rates were parameterized according to CRAC:CRII (Cosmic Ray-induced Atmospheric Cascade: Application for Cosmic Ray Induced Ionization), a detailed state-of-the-art model describing the effects of SPEs in the entire altitude range of the CCM from 0 to 80 km. This is the first study of the atmospheric effect of such an extreme event that considers all the effects of energetic particles, including the variability of galactic cosmic rays, in the entire atmosphere. We assumed two scenarios for the event, namely with a hard (as for the SPE of February 1956) and soft (as for the SPE of August 1972) spectrum of solar particles. We have placed such an event in the year 2020 in order to analyze the impact on a near future atmosphere. We find statistically significant effects on NOx, HOx, ozone, temperature and zonal wind. The results show an increase of NOx of up to 80 ppb in the northern polar region and an increase of up to 70 ppb in the southern polar region. HOx shows an increase of up to 4000%. Due to the NOx and HOx enhancements, ozone reduces by up to 60% in the mesosphere and by up to 20% in the stratosphere for several weeks after the event started. Total ozone shows a decrease of more than 20 DU in the northern hemisphere and up to 20 DU in the southern hemisphere. The model also identifies SPE induced statistically significant changes in the surface air temperature, with warming in the eastern part of Europe and Russia of up to 7 K for January.
AB - This study investigates the influence of a major solar proton event (SPE) similar to the Carrington event of 1-2 September 1859 by means of the 3D chemistry climate model (CCM) SOCOL v2.0. Ionization rates were parameterized according to CRAC:CRII (Cosmic Ray-induced Atmospheric Cascade: Application for Cosmic Ray Induced Ionization), a detailed state-of-the-art model describing the effects of SPEs in the entire altitude range of the CCM from 0 to 80 km. This is the first study of the atmospheric effect of such an extreme event that considers all the effects of energetic particles, including the variability of galactic cosmic rays, in the entire atmosphere. We assumed two scenarios for the event, namely with a hard (as for the SPE of February 1956) and soft (as for the SPE of August 1972) spectrum of solar particles. We have placed such an event in the year 2020 in order to analyze the impact on a near future atmosphere. We find statistically significant effects on NOx, HOx, ozone, temperature and zonal wind. The results show an increase of NOx of up to 80 ppb in the northern polar region and an increase of up to 70 ppb in the southern polar region. HOx shows an increase of up to 4000%. Due to the NOx and HOx enhancements, ozone reduces by up to 60% in the mesosphere and by up to 20% in the stratosphere for several weeks after the event started. Total ozone shows a decrease of more than 20 DU in the northern hemisphere and up to 20 DU in the southern hemisphere. The model also identifies SPE induced statistically significant changes in the surface air temperature, with warming in the eastern part of Europe and Russia of up to 7 K for January.
KW - space weather
KW - modeling
KW - Carrington event
KW - SOLAR PROTON EVENTS
KW - CLIMATE MODEL SOCOL
KW - MIDDLE ATMOSPHERE
KW - IONIZATION
KW - VORTEX
KW - IMPACT
U2 - 10.1088/1748-9326/8/4/045010
DO - 10.1088/1748-9326/8/4/045010
M3 - статья
VL - 8
JO - Environmental Research Letters
JF - Environmental Research Letters
SN - 1748-9326
IS - 4
M1 - 045010
ER -
ID: 105537830