Abstract: An inhomogeneous Kirchhoff plate composed of a semi-infinite strip waveguide and a compact resonator that is in contact with a Winkler foundation of low variable compliance is considered. It is shown that, for any ε > 0, a compliance coefficient O(ε2) can be found such that the described plate possesses the eigenvalue ε4 embedded into the continuous spectrum. This result is quite surprising, because, in an acoustic waveguide (the spectral Neumann problem for the Laplace operator) a small eigenvalue does not exist for any slight perturbation. The cause of this disagreement is explained.
Original language | English |
---|---|
Pages (from-to) | 491-495 |
Number of pages | 5 |
Journal | Doklady Mathematics |
Volume | 100 |
Issue number | 2 |
DOIs | |
State | Published - 1 Sep 2019 |
ID: 60873850