Research output: Contribution to journal › Article › peer-review
Infinite Geodesics in the Discrete Heisenberg Group. / Малютин, Андрей Валерьевич; Вершик, Анатолий Моисеевич.
In: Journal of Mathematical Sciences, Vol. 232, No. 2, 01.07.2018, p. 121-128.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Infinite Geodesics in the Discrete Heisenberg Group
AU - Малютин, Андрей Валерьевич
AU - Вершик, Анатолий Моисеевич
N1 - A.M.Vershik, A.V.Malyutin, Infinite Geodesics in the Discrete Heisenberg Group. Journal of Mathematical Sciences, Volume 232, Issue 2, 1 July 2018, Pages 121-128. https://link.springer.com/article/10.1007%2Fs10958-018-3862-5
PY - 2018/7/1
Y1 - 2018/7/1
N2 - We give an exhaustive description of the family of infinite geodesics in the discrete Heisenberg group (with respect to the standard generating set). The classification of infinite geodesics is needed to describe the so-called absolute (exit boundary) of a group. The absolute of the discrete Heisenberg group will be described in a forthcoming paper.
AB - We give an exhaustive description of the family of infinite geodesics in the discrete Heisenberg group (with respect to the standard generating set). The classification of infinite geodesics is needed to describe the so-called absolute (exit boundary) of a group. The absolute of the discrete Heisenberg group will be described in a forthcoming paper.
KW - discrete Heisenberg group
KW - normal form
KW - absolute
KW - exit-boundary
KW - geodesic
UR - http://www.scopus.com/inward/record.url?scp=85047408339&partnerID=8YFLogxK
U2 - https://doi.org/10.1007/s10958-018-3862-5
DO - https://doi.org/10.1007/s10958-018-3862-5
M3 - Article
VL - 232
SP - 121
EP - 128
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 2
ER -
ID: 35198973