An analysis was conducted to investigate how reaction system turbulence affects the butadiene-isoprene copolymerization in the presence of the TiCl4 + Al(i-Bu)3 catalytic system. A model was developed, which integrates CFD simulations of TiCl4 + Al(i-Bu)3 particle breakage based on population balance equations with the kinetic modeling of the butadiene-isoprene copolymerization. It was established that an increase in turbulent kinetic energy leads to a reduction in catalyst particle size, an increase in active site concentration, an acceleration of the copolymerization process, and a decrease in the average molecular weights of the copolymer. Furthermore, catalytic activity correlates with both the average and maximum values of turbulent kinetic energy in the reaction system, whereas the effect of the average residence time of catalytic particles under turbulent conditions is insignificant. Based on these results, recommendations were provided for optimizing the impact of reaction system turbulence on TiCl4 + Al(i-Bu)3 particles to enhance the butadiene-isoprene copolymerization rate and achieve precise control over the molecular weight characteristics of the copolymer. The findings of this study can be applied to optimize the synthesis technology of the cis-1,4 butadiene-isoprene copolymer, which is used in the production of frost-resistant rubber.
Original languageEnglish
Article number39
Pages (from-to)39
JournalCompounds
Volume5
Issue number4
DOIs
StatePublished - 29 Sep 2025

ID: 141949046