Standard

Immunoinformatics in COVID-19 Vaccine Development: The Role of HLA System. / Anisenkova, Anna Yu. ; Golota, Aleksander S. ; Vologzhanin, Dmitry A. ; Kamilova, Tatyana A. ; Makarenko, Stanislav V. ; Shneider, Olga V. ; Glotov, Oleg S. ; Serov, Yury A. ; Mosenko, Sergey V. ; Azarenko, Sergey V.; Smanzerev, Konstantin V. ; Khobotnikov, Dmitry N. ; Gladisheva, Tatyana V. ; Shcherbak, Sergey G. .

In: Cellular Therapy and Transplantation, Vol. 10, No. 1, 01.03.2021, p. 13-23.

Research output: Contribution to journalReview articlepeer-review

Harvard

Anisenkova, AY, Golota, AS, Vologzhanin, DA, Kamilova, TA, Makarenko, SV, Shneider, OV, Glotov, OS, Serov, YA, Mosenko, SV, Azarenko, SV, Smanzerev, KV, Khobotnikov, DN, Gladisheva, TV & Shcherbak, SG 2021, 'Immunoinformatics in COVID-19 Vaccine Development: The Role of HLA System', Cellular Therapy and Transplantation, vol. 10, no. 1, pp. 13-23. https://doi.org/10.18620/CTT-1866-8836-2021-10-1-13-23

APA

Anisenkova, A. Y., Golota, A. S., Vologzhanin, D. A., Kamilova, T. A., Makarenko, S. V., Shneider, O. V., Glotov, O. S., Serov, Y. A., Mosenko, S. V., Azarenko, S. V., Smanzerev, K. V., Khobotnikov, D. N., Gladisheva, T. V., & Shcherbak, S. G. (2021). Immunoinformatics in COVID-19 Vaccine Development: The Role of HLA System. Cellular Therapy and Transplantation, 10(1), 13-23. https://doi.org/10.18620/CTT-1866-8836-2021-10-1-13-23

Vancouver

Author

Anisenkova, Anna Yu. ; Golota, Aleksander S. ; Vologzhanin, Dmitry A. ; Kamilova, Tatyana A. ; Makarenko, Stanislav V. ; Shneider, Olga V. ; Glotov, Oleg S. ; Serov, Yury A. ; Mosenko, Sergey V. ; Azarenko, Sergey V. ; Smanzerev, Konstantin V. ; Khobotnikov, Dmitry N. ; Gladisheva, Tatyana V. ; Shcherbak, Sergey G. . / Immunoinformatics in COVID-19 Vaccine Development: The Role of HLA System. In: Cellular Therapy and Transplantation. 2021 ; Vol. 10, No. 1. pp. 13-23.

BibTeX

@article{e0b263b2d84e4e2ebf8b74b37576434f,
title = "Immunoinformatics in COVID-19 Vaccine Development: The Role of HLA System",
abstract = "Individual genetic variation may help to explain different immune responses to a coronavirus SARS-CoV-2 across a population. The in silico computer simulation methodology provides the experimental community with a more complete list of SARS-CoV-2 immunogenic peptides presented by the antigens of the HLA system. This review considers an array of computationally predicted immunogenic peptides from SARS-CoV-2 for in vitro functional validation and potential vaccine devel-opments. Several independent studies conducted with different approaches showed a high degree of confidence and reproducibility of the results. Computer-assisted prediction is instrumental for a quick and cost-effective solution to prevent the spread and ultimately eliminate the infection. Most efforts to develop vaccines and drugs against SARS-CoV-2 target the spike glycoprotein (protein S), the major inducer of neutralizing antibodies. Several candidates have been shown to be effective in in vitro studies and have progressed to randomized trials in an-imals or humans against COVID-19 infection. This ar-ticle highlights current advances in the development of subunit vaccines to combat COVID-19 that are reducing the time and costs of vaccine development.",
keywords = "коронавирус, Sars-coV-2, COVID-19, Hla, иммуногенный пептид, антиген, эпитоп, вакцина, компьютерное прогнозирование, компьютерное моделирование in silico, иммуноинформатика, coronavirus, IMMUNOGENIC PEPTIDES, ANTIGEN, Vaccines, EPITOPE, COMPUTATIONAL PREDICTION, COMPUTER SIMULATION IN SILICO, IMMUNOINFORMATICS, Epitope, Computational prediction, Immunoinfor-matics, Vaccine, Antigen, COVID-19, SARS-CoV-2, Coronavirus, Computer simulation in silico, Immunogenic peptides, HLA",
author = "Anisenkova, {Anna Yu.} and Golota, {Aleksander S.} and Vologzhanin, {Dmitry A.} and Kamilova, {Tatyana A.} and Makarenko, {Stanislav V.} and Shneider, {Olga V.} and Glotov, {Oleg S.} and Serov, {Yury A.} and Mosenko, {Sergey V.} and Azarenko, {Sergey V.} and Smanzerev, {Konstantin V.} and Khobotnikov, {Dmitry N.} and Gladisheva, {Tatyana V.} and Shcherbak, {Sergey G.}",
year = "2021",
month = mar,
day = "1",
doi = "10.18620/CTT-1866-8836-2021-10-1-13-23",
language = "English",
volume = "10",
pages = "13--23",
journal = "Cellular Therapy and Transplantation",
issn = "1867-416X",
publisher = "Universitatsklinikum Hamburg - Eppendorf",
number = "1",

}

RIS

TY - JOUR

T1 - Immunoinformatics in COVID-19 Vaccine Development: The Role of HLA System

AU - Anisenkova, Anna Yu.

AU - Golota, Aleksander S.

AU - Vologzhanin, Dmitry A.

AU - Kamilova, Tatyana A.

AU - Makarenko, Stanislav V.

AU - Shneider, Olga V.

AU - Glotov, Oleg S.

AU - Serov, Yury A.

AU - Mosenko, Sergey V.

AU - Azarenko, Sergey V.

AU - Smanzerev, Konstantin V.

AU - Khobotnikov, Dmitry N.

AU - Gladisheva, Tatyana V.

AU - Shcherbak, Sergey G.

PY - 2021/3/1

Y1 - 2021/3/1

N2 - Individual genetic variation may help to explain different immune responses to a coronavirus SARS-CoV-2 across a population. The in silico computer simulation methodology provides the experimental community with a more complete list of SARS-CoV-2 immunogenic peptides presented by the antigens of the HLA system. This review considers an array of computationally predicted immunogenic peptides from SARS-CoV-2 for in vitro functional validation and potential vaccine devel-opments. Several independent studies conducted with different approaches showed a high degree of confidence and reproducibility of the results. Computer-assisted prediction is instrumental for a quick and cost-effective solution to prevent the spread and ultimately eliminate the infection. Most efforts to develop vaccines and drugs against SARS-CoV-2 target the spike glycoprotein (protein S), the major inducer of neutralizing antibodies. Several candidates have been shown to be effective in in vitro studies and have progressed to randomized trials in an-imals or humans against COVID-19 infection. This ar-ticle highlights current advances in the development of subunit vaccines to combat COVID-19 that are reducing the time and costs of vaccine development.

AB - Individual genetic variation may help to explain different immune responses to a coronavirus SARS-CoV-2 across a population. The in silico computer simulation methodology provides the experimental community with a more complete list of SARS-CoV-2 immunogenic peptides presented by the antigens of the HLA system. This review considers an array of computationally predicted immunogenic peptides from SARS-CoV-2 for in vitro functional validation and potential vaccine devel-opments. Several independent studies conducted with different approaches showed a high degree of confidence and reproducibility of the results. Computer-assisted prediction is instrumental for a quick and cost-effective solution to prevent the spread and ultimately eliminate the infection. Most efforts to develop vaccines and drugs against SARS-CoV-2 target the spike glycoprotein (protein S), the major inducer of neutralizing antibodies. Several candidates have been shown to be effective in in vitro studies and have progressed to randomized trials in an-imals or humans against COVID-19 infection. This ar-ticle highlights current advances in the development of subunit vaccines to combat COVID-19 that are reducing the time and costs of vaccine development.

KW - коронавирус

KW - Sars-coV-2

KW - COVID-19

KW - Hla

KW - иммуногенный пептид

KW - антиген

KW - эпитоп

KW - вакцина

KW - компьютерное прогнозирование

KW - компьютерное моделирование in silico

KW - иммуноинформатика

KW - coronavirus

KW - IMMUNOGENIC PEPTIDES

KW - ANTIGEN

KW - Vaccines

KW - EPITOPE

KW - COMPUTATIONAL PREDICTION

KW - COMPUTER SIMULATION IN SILICO

KW - IMMUNOINFORMATICS

KW - Epitope

KW - Computational prediction

KW - Immunoinfor-matics

KW - Vaccine

KW - Antigen

KW - COVID-19

KW - SARS-CoV-2

KW - Coronavirus

KW - Computer simulation in silico

KW - Immunogenic peptides

KW - HLA

UR - http://cttjournal.com/en/archive/tom-10-nomer-1/obzornye-stati/immunoinformatika-v-razrabotke-vaktsiny-protiv-covid-19-rol-sistemy-hla/

UR - https://elibrary.ru/item.asp?id=46143551

UR - http://www.scopus.com/inward/record.url?scp=85108243331&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/862e2321-3a44-3fc9-ab34-e4e4b5ed3566/

U2 - 10.18620/CTT-1866-8836-2021-10-1-13-23

DO - 10.18620/CTT-1866-8836-2021-10-1-13-23

M3 - Review article

VL - 10

SP - 13

EP - 23

JO - Cellular Therapy and Transplantation

JF - Cellular Therapy and Transplantation

SN - 1867-416X

IS - 1

ER -

ID: 77975340