Standard

Immortalized murine fibroblast cell lines are refractory to reprogramming to pluripotent state. / Skvortsova, Elena V.; Sinenko, Sergey A.; Tomilin, Alexey N.

In: Oncotarget, Vol. 9, No. 81, 01.10.2018, p. 35241-35250.

Research output: Contribution to journalArticlepeer-review

Harvard

Skvortsova, EV, Sinenko, SA & Tomilin, AN 2018, 'Immortalized murine fibroblast cell lines are refractory to reprogramming to pluripotent state', Oncotarget, vol. 9, no. 81, pp. 35241-35250.

APA

Skvortsova, E. V., Sinenko, S. A., & Tomilin, A. N. (2018). Immortalized murine fibroblast cell lines are refractory to reprogramming to pluripotent state. Oncotarget, 9(81), 35241-35250.

Vancouver

Author

Skvortsova, Elena V. ; Sinenko, Sergey A. ; Tomilin, Alexey N. / Immortalized murine fibroblast cell lines are refractory to reprogramming to pluripotent state. In: Oncotarget. 2018 ; Vol. 9, No. 81. pp. 35241-35250.

BibTeX

@article{7c540dcba21d403da2a1117bdbaed1b1,
title = "Immortalized murine fibroblast cell lines are refractory to reprogramming to pluripotent state",
abstract = "To date different cell types of various mammalian species have been reprogrammed to induced pluripotent stem cells (iPSCs) using Yamanaka's cocktail of transcription factors (Oct4, Klf4, Sox2, and cMyc). It has been shown that several primary human cancer cell lines could be reprogrammed to iPSCs. We sought if immortalized mouse fibroblast cell lines could also be reprogrammed to iPSCs. The approach of generating iPSCs from such cells should be valuable in different experimental settings as it allows clonally derive cell lines carrying mutations whose impact on reprogramming could be next evaluated. Therefore, we investigated reprogramming of widely used immortalized cell lines (NIH3T and STO), as well as of de novo immortalized fibroblast line (tKM) with the use of highly effective lentiviral polycistronic OKSM expression system. Our reprogramming experiments have shown that in contrast to mouse embryonic fibroblasts (MEFs), none of the immortalized cell lines can be reprogrammed to pluripotent state. Contrary to colonies derived from MEFs, those derived from the immortalized cells lines (1) developed much later, (2) contained large round cells, not typical for iPSCs, and (3) were negative for trusted markers of matured iPSCs, Nanog and SSEA1. Immortalized cell lines NIH3T and STO are known to be mostly aneuploid, whereas tKM population includes cells with normal karyotype, however, neither cell type can be reprogrammed. Thus our data argue that aneuploidy per se is not a reason for the observed refractoriness of mouse immortalized cells to reprogramming to pluripotent state.",
keywords = "Cell reprogramming, iPSC, NIH3T3, Pluripotency, STO",
author = "Skvortsova, {Elena V.} and Sinenko, {Sergey A.} and Tomilin, {Alexey N.}",
year = "2018",
month = oct,
day = "1",
language = "English",
volume = "9",
pages = "35241--35250",
journal = "Oncotarget",
issn = "1949-2553",
publisher = "Impact Journals",
number = "81",

}

RIS

TY - JOUR

T1 - Immortalized murine fibroblast cell lines are refractory to reprogramming to pluripotent state

AU - Skvortsova, Elena V.

AU - Sinenko, Sergey A.

AU - Tomilin, Alexey N.

PY - 2018/10/1

Y1 - 2018/10/1

N2 - To date different cell types of various mammalian species have been reprogrammed to induced pluripotent stem cells (iPSCs) using Yamanaka's cocktail of transcription factors (Oct4, Klf4, Sox2, and cMyc). It has been shown that several primary human cancer cell lines could be reprogrammed to iPSCs. We sought if immortalized mouse fibroblast cell lines could also be reprogrammed to iPSCs. The approach of generating iPSCs from such cells should be valuable in different experimental settings as it allows clonally derive cell lines carrying mutations whose impact on reprogramming could be next evaluated. Therefore, we investigated reprogramming of widely used immortalized cell lines (NIH3T and STO), as well as of de novo immortalized fibroblast line (tKM) with the use of highly effective lentiviral polycistronic OKSM expression system. Our reprogramming experiments have shown that in contrast to mouse embryonic fibroblasts (MEFs), none of the immortalized cell lines can be reprogrammed to pluripotent state. Contrary to colonies derived from MEFs, those derived from the immortalized cells lines (1) developed much later, (2) contained large round cells, not typical for iPSCs, and (3) were negative for trusted markers of matured iPSCs, Nanog and SSEA1. Immortalized cell lines NIH3T and STO are known to be mostly aneuploid, whereas tKM population includes cells with normal karyotype, however, neither cell type can be reprogrammed. Thus our data argue that aneuploidy per se is not a reason for the observed refractoriness of mouse immortalized cells to reprogramming to pluripotent state.

AB - To date different cell types of various mammalian species have been reprogrammed to induced pluripotent stem cells (iPSCs) using Yamanaka's cocktail of transcription factors (Oct4, Klf4, Sox2, and cMyc). It has been shown that several primary human cancer cell lines could be reprogrammed to iPSCs. We sought if immortalized mouse fibroblast cell lines could also be reprogrammed to iPSCs. The approach of generating iPSCs from such cells should be valuable in different experimental settings as it allows clonally derive cell lines carrying mutations whose impact on reprogramming could be next evaluated. Therefore, we investigated reprogramming of widely used immortalized cell lines (NIH3T and STO), as well as of de novo immortalized fibroblast line (tKM) with the use of highly effective lentiviral polycistronic OKSM expression system. Our reprogramming experiments have shown that in contrast to mouse embryonic fibroblasts (MEFs), none of the immortalized cell lines can be reprogrammed to pluripotent state. Contrary to colonies derived from MEFs, those derived from the immortalized cells lines (1) developed much later, (2) contained large round cells, not typical for iPSCs, and (3) were negative for trusted markers of matured iPSCs, Nanog and SSEA1. Immortalized cell lines NIH3T and STO are known to be mostly aneuploid, whereas tKM population includes cells with normal karyotype, however, neither cell type can be reprogrammed. Thus our data argue that aneuploidy per se is not a reason for the observed refractoriness of mouse immortalized cells to reprogramming to pluripotent state.

KW - Cell reprogramming

KW - iPSC

KW - NIH3T3

KW - Pluripotency

KW - STO

UR - http://www.scopus.com/inward/record.url?scp=85055536494&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85055536494

VL - 9

SP - 35241

EP - 35250

JO - Oncotarget

JF - Oncotarget

SN - 1949-2553

IS - 81

ER -

ID: 50500887