Standard

Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.). / Puglia, Giuseppe D.; Prjibelski, Andrey D.; Vitale, Domenico; Bushmanova, Elena; Schmid, Karl J.; Raccuia, Salvatore A.

In: BMC Genomics, Vol. 21, No. 1, 317, 21.08.2020.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Author

Puglia, Giuseppe D. ; Prjibelski, Andrey D. ; Vitale, Domenico ; Bushmanova, Elena ; Schmid, Karl J. ; Raccuia, Salvatore A. / Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.). In: BMC Genomics. 2020 ; Vol. 21, No. 1.

BibTeX

@article{0f7b79ca8f754642af8305ac5dd2625d,
title = "Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.)",
abstract = "Background: The investigation of transcriptome profiles using short reads in non-model organisms, which lack of well-annotated genomes, is limited by partial gene reconstruction and isoform detection. In contrast, long-reads sequencing techniques revealed their potential to generate complete transcript assemblies even when a reference genome is lacking. Cynara cardunculus var. altilis (DC) (cultivated cardoon) is a perennial hardy crop adapted to dry environments with many industrial and nutraceutical applications due to the richness of secondary metabolites mostly produced in flower heads. The investigation of this species benefited from the recent release of a draft genome, but the transcriptome profile during the capitula formation still remains unexplored. In the present study we show a transcriptome analysis of vegetative and inflorescence organs of cultivated cardoon through a novel hybrid RNA-seq assembly approach utilizing both long and short RNA-seq reads. Results: The inclusion of a single Nanopore flow-cell output in a hybrid sequencing approach determined an increase of 15% complete assembled genes and 18% transcript isoforms respect to short reads alone. Among 25,463 assembled unigenes, we identified 578 new genes and updated 13,039 gene models, 11,169 of which were alternatively spliced isoforms. During capitulum development, 3424 genes were differentially expressed and approximately two-thirds were identified as transcription factors including bHLH, MYB, NAC, C2H2 and MADS-box which were highly expressed especially after capitulum opening. We also show the expression dynamics of key genes involved in the production of valuable secondary metabolites of which capitulum is rich such as phenylpropanoids, flavonoids and sesquiterpene lactones. Most of their biosynthetic genes were strongly transcribed in the flower heads with alternative isoforms exhibiting differentially expression levels across the tissues. Conclusions: This novel hybrid sequencing approach allowed to improve the transcriptome assembly, to update more than half of annotated genes and to identify many novel genes and different alternatively spliced isoforms. This study provides new insights on the flowering cycle in an Asteraceae plant, a valuable resource for plant biology and breeding in Cynara and an effective method for improving gene annotation. ",
keywords = "Alternatively spliced isoforms, Cynara cardunculus, de novo transcriptome assembly, Gene annotation, Hybrid-seq, Inflorescence development, Isoform detection, RNA-seq, BIOACTIVITY, ACIDS, IDENTIFICATION, QUALITY ASSESSMENT, FLAVONOID BIOSYNTHESIS, CYNARA-CARDUNCULUS L., RNA-SEQ, GLOBE ARTICHOKE, FLOWER, EXPRESSION",
author = "Puglia, {Giuseppe D.} and Prjibelski, {Andrey D.} and Domenico Vitale and Elena Bushmanova and Schmid, {Karl J.} and Raccuia, {Salvatore A.}",
year = "2020",
month = aug,
day = "21",
doi = "10.1186/s12864-020-6670-5",
language = "English",
volume = "21",
journal = "BMC Genomics",
issn = "1471-2164",
publisher = "BioMed Central Ltd.",
number = "1",

}

RIS

TY - JOUR

T1 - Hybrid transcriptome sequencing approach improved assembly and gene annotation in Cynara cardunculus (L.)

AU - Puglia, Giuseppe D.

AU - Prjibelski, Andrey D.

AU - Vitale, Domenico

AU - Bushmanova, Elena

AU - Schmid, Karl J.

AU - Raccuia, Salvatore A.

PY - 2020/8/21

Y1 - 2020/8/21

N2 - Background: The investigation of transcriptome profiles using short reads in non-model organisms, which lack of well-annotated genomes, is limited by partial gene reconstruction and isoform detection. In contrast, long-reads sequencing techniques revealed their potential to generate complete transcript assemblies even when a reference genome is lacking. Cynara cardunculus var. altilis (DC) (cultivated cardoon) is a perennial hardy crop adapted to dry environments with many industrial and nutraceutical applications due to the richness of secondary metabolites mostly produced in flower heads. The investigation of this species benefited from the recent release of a draft genome, but the transcriptome profile during the capitula formation still remains unexplored. In the present study we show a transcriptome analysis of vegetative and inflorescence organs of cultivated cardoon through a novel hybrid RNA-seq assembly approach utilizing both long and short RNA-seq reads. Results: The inclusion of a single Nanopore flow-cell output in a hybrid sequencing approach determined an increase of 15% complete assembled genes and 18% transcript isoforms respect to short reads alone. Among 25,463 assembled unigenes, we identified 578 new genes and updated 13,039 gene models, 11,169 of which were alternatively spliced isoforms. During capitulum development, 3424 genes were differentially expressed and approximately two-thirds were identified as transcription factors including bHLH, MYB, NAC, C2H2 and MADS-box which were highly expressed especially after capitulum opening. We also show the expression dynamics of key genes involved in the production of valuable secondary metabolites of which capitulum is rich such as phenylpropanoids, flavonoids and sesquiterpene lactones. Most of their biosynthetic genes were strongly transcribed in the flower heads with alternative isoforms exhibiting differentially expression levels across the tissues. Conclusions: This novel hybrid sequencing approach allowed to improve the transcriptome assembly, to update more than half of annotated genes and to identify many novel genes and different alternatively spliced isoforms. This study provides new insights on the flowering cycle in an Asteraceae plant, a valuable resource for plant biology and breeding in Cynara and an effective method for improving gene annotation.

AB - Background: The investigation of transcriptome profiles using short reads in non-model organisms, which lack of well-annotated genomes, is limited by partial gene reconstruction and isoform detection. In contrast, long-reads sequencing techniques revealed their potential to generate complete transcript assemblies even when a reference genome is lacking. Cynara cardunculus var. altilis (DC) (cultivated cardoon) is a perennial hardy crop adapted to dry environments with many industrial and nutraceutical applications due to the richness of secondary metabolites mostly produced in flower heads. The investigation of this species benefited from the recent release of a draft genome, but the transcriptome profile during the capitula formation still remains unexplored. In the present study we show a transcriptome analysis of vegetative and inflorescence organs of cultivated cardoon through a novel hybrid RNA-seq assembly approach utilizing both long and short RNA-seq reads. Results: The inclusion of a single Nanopore flow-cell output in a hybrid sequencing approach determined an increase of 15% complete assembled genes and 18% transcript isoforms respect to short reads alone. Among 25,463 assembled unigenes, we identified 578 new genes and updated 13,039 gene models, 11,169 of which were alternatively spliced isoforms. During capitulum development, 3424 genes were differentially expressed and approximately two-thirds were identified as transcription factors including bHLH, MYB, NAC, C2H2 and MADS-box which were highly expressed especially after capitulum opening. We also show the expression dynamics of key genes involved in the production of valuable secondary metabolites of which capitulum is rich such as phenylpropanoids, flavonoids and sesquiterpene lactones. Most of their biosynthetic genes were strongly transcribed in the flower heads with alternative isoforms exhibiting differentially expression levels across the tissues. Conclusions: This novel hybrid sequencing approach allowed to improve the transcriptome assembly, to update more than half of annotated genes and to identify many novel genes and different alternatively spliced isoforms. This study provides new insights on the flowering cycle in an Asteraceae plant, a valuable resource for plant biology and breeding in Cynara and an effective method for improving gene annotation.

KW - Alternatively spliced isoforms

KW - Cynara cardunculus

KW - de novo transcriptome assembly

KW - Gene annotation

KW - Hybrid-seq

KW - Inflorescence development

KW - Isoform detection

KW - RNA-seq

KW - BIOACTIVITY

KW - ACIDS

KW - IDENTIFICATION

KW - QUALITY ASSESSMENT

KW - FLAVONOID BIOSYNTHESIS

KW - CYNARA-CARDUNCULUS L.

KW - RNA-SEQ

KW - GLOBE ARTICHOKE

KW - FLOWER

KW - EXPRESSION

UR - http://www.scopus.com/inward/record.url?scp=85089769799&partnerID=8YFLogxK

U2 - 10.1186/s12864-020-6670-5

DO - 10.1186/s12864-020-6670-5

M3 - Article

C2 - 32819282

AN - SCOPUS:85089769799

VL - 21

JO - BMC Genomics

JF - BMC Genomics

SN - 1471-2164

IS - 1

M1 - 317

ER -

ID: 62885430