In this work we analyze and compare machine learning methods for recognizing human activity in the context of smart home by using data obtained from an optical heartbeat sensor and an accelerometer embedded in a smart watch, and find a number of activity classes that can be predicted. The conclusion is made that for such type of problems the random forest method with about 10 classes shows the best results.

Original languageEnglish
Article number012112
JournalJournal of Physics: Conference Series
Volume1864
Issue number1
DOIs
StatePublished - 20 May 2021
Event13th Multiconference on Control Problems, MCCP 2020: Математическая теория управления и ее приложения (МТУиП) - ГНЦ РФ АО «Концерн «ЦНИИ «Электроприбор», Санкт-Петербург, Russian Federation
Duration: 6 Oct 20208 Oct 2020
Conference number: 13
http://www.elektropribor.spb.ru/nauchnaya-deyatelnost/xiii-mkpu/index3.php

    Scopus subject areas

  • Physics and Astronomy(all)

ID: 86377540