Research output: Contribution to journal › Conference article › peer-review
In this work we analyze and compare machine learning methods for recognizing human activity in the context of smart home by using data obtained from an optical heartbeat sensor and an accelerometer embedded in a smart watch, and find a number of activity classes that can be predicted. The conclusion is made that for such type of problems the random forest method with about 10 classes shows the best results.
Original language | English |
---|---|
Article number | 012112 |
Journal | Journal of Physics: Conference Series |
Volume | 1864 |
Issue number | 1 |
DOIs | |
State | Published - 20 May 2021 |
Event | 13th Multiconference on Control Problems, MCCP 2020: Математическая теория управления и ее приложения (МТУиП) - ГНЦ РФ АО «Концерн «ЦНИИ «Электроприбор», Санкт-Петербург, Russian Federation Duration: 6 Oct 2020 → 8 Oct 2020 Conference number: 13 http://www.elektropribor.spb.ru/nauchnaya-deyatelnost/xiii-mkpu/index3.php |
ID: 86377540