Research output: Contribution to journal › Article › peer-review
Hopf-theoretic approach to motives of twisted flag varieties. / Petrov, Victor; Semenov, Nikita.
In: Compositio Mathematica, Vol. 157, No. 5, PII S0010437X2100703X, 29.04.2021, p. 963-996.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Hopf-theoretic approach to motives of twisted flag varieties
AU - Petrov, Victor
AU - Semenov, Nikita
N1 - Publisher Copyright: © The Author(s) 2021. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/4/29
Y1 - 2021/4/29
N2 - Let be a split semisimple algebraic group over a field and let be an oriented cohomology theory in the Levine-Morel sense. We provide a uniform approach to the -motives of geometrically cellular smooth projective -varieties based on the Hopf algebra structure of. Using this approach, we provide various applications to the structure of motives of twisted flag varieties.
AB - Let be a split semisimple algebraic group over a field and let be an oriented cohomology theory in the Levine-Morel sense. We provide a uniform approach to the -motives of geometrically cellular smooth projective -varieties based on the Hopf algebra structure of. Using this approach, we provide various applications to the structure of motives of twisted flag varieties.
KW - Hopf algebras
KW - linear algebraic groups
KW - motives
KW - oriented cohomology theories
KW - twisted flag varieties
KW - REPRESENTATIONS
KW - OPERATIONS
KW - ORIENTED COHOMOLOGY
KW - TORSION
KW - J-INVARIANT
KW - DECOMPOSITIONS
KW - COMPACT
KW - LIE-GROUPS
UR - http://www.scopus.com/inward/record.url?scp=85105103777&partnerID=8YFLogxK
U2 - 10.1112/S0010437X2100703X
DO - 10.1112/S0010437X2100703X
M3 - Article
AN - SCOPUS:85105103777
VL - 157
SP - 963
EP - 996
JO - Compositio Mathematica
JF - Compositio Mathematica
SN - 0010-437X
IS - 5
M1 - PII S0010437X2100703X
ER -
ID: 78274376